
CoRoT Contributions
Release 1.0

Jul 15, 2020

Reading and Plotting

1 Introduction to CoRoT 3

2 Problem proposed 5

3 Pipeline 7

4 Some results. . . 15
4.1 Read .fits raw data . 15
4.2 Preprocessing data . 18
4.3 Resampling series . 18

4.3.1 Sample time distribution . 18
4.3.2 Resample time series data . 19

4.4 Filtering series . 20
4.5 Application example . 21
4.6 Generation algorithms . 23
4.7 Save pre-processed data . 25

4.7.1 Save as .mat file . 25
4.7.2 Save as .pickle file . 26

4.8 Reading the data . 26
4.9 Feature: Frequency response . 28

4.9.1 Introduction . 28
4.9.2 Spectrum generation . 28
4.9.3 Detrended spectrum . 29
4.9.4 Resample spectrum . 31
4.9.5 Generation algorithm . 32
4.9.6 Save feature . 33

4.10 Feature: Naive Bayes likelihood . 33
4.10.1 Regression model . 34
4.10.2 Next step parameters . 34
4.10.3 Save feature . 35

4.11 Feature: Markov Hidden Models . 35
4.11.1 Preprocessing data . 36
4.11.2 Estimate HMM . 36
4.11.3 Save feature . 37
4.11.4 Download features . 37

4.12 XGBoost Classifier . 38
4.12.1 Periodograms . 38

i

4.12.2 Naive Bayes likelihood . 43
4.12.3 Hidden Markov Models . 47

4.13 Decision trees . 52
4.13.1 Periodograms . 53
4.13.2 Naive Bayes likelihood . 57
4.13.3 Hidden Markov Models . 61

4.14 CoRoT Contributions . 66
4.14.1 utils Package . 66

4.15 Vanderlei Cunha Parro . 71
4.16 Marcelo Mendes Lafetá Lima . 71
4.17 Roberto Bertoldo Menezes . 71

5 Indices and tables 73

Python Module Index 75

Index 77

ii

CoRoT Contributions, Release 1.0

Here the summary results and developments of the project called A Data Analysis Pipeline for the CoRoT Light
Curve Data, supported by NSEE and FAPESP. The pipeline major three specific topics that will allow any user with
basic knowledge in Python to reproduce the analysis. The work is called here also by its repository name: CoRoT
Contributions.

This work fundamentally rely on multidiscipline knowledge, passing by computation, mathematics, signal analysis
and phisycs. The main idea is to show how to implement this fields knowledge to solve a practical problem, therefore
no introduction level discussion is expected. The focus relies on high level discution on most of those subjects.

In this documentation first an Introduction on the CoRoT mission is presented to bring the reader more close to the
problem faced by the astronomical community and clearify the importance of the proposed problem. Thence, the
Problem that will be faced is presented and discussed to introduce the necessary knowledge to interpret the data and
understand some decisions taken during the project developments. Finally the data processing Pipeline is presented
with all the algorithms and analysis necessary to get to the exoplanet classifier presented as the project results.

Finally, all pipeline steps are presented in a detailed manner, by going through all the low-level computations, with
code examples. Leading the way to the final results obtained, and reports.

See also:

This documentation is just a guide trough how one can use the provided python libraries do go from the raw data
collected from the CoRoT satellite, to a simple architecture to be used on machine learning algorithms. Then, some
examples of how to use theses features on machine learning classifiers are presented. If one also wants to check other
possible applications please check the GitHub repository.

Reading and Plotting 1

https://readthedocs.org/projects/corot-contributions/
https://github.com/lafetamarcelo/CoRoTContributions/
https://discord.gg/EenaYE5

CoRoT Contributions, Release 1.0

2 Reading and Plotting

CHAPTER 1

Introduction to CoRoT

The CoRoT (Convection, Rotation and planetary Transits) was the first mission dedicated and designed for the exo-
planetary research. Operated in a lower Earth orbit, has the objectives of using its CCD widefield cameras to obtain
and gather light information for the study of supposed exoplanetary behaviors. The project, launched in 2006 had
nominal lifetime of 2.5 years, but it actually ended in 2014 when it was de-orbited. The project was led by CNES,
with contributions from ESA, Austria, Belgium, Germany, Spain and Brazil.

One of the key information collected by the CCD cameras was the light intensity from the planets, which there is
a collection of thousands of light curves observations of different candidates. Interesting enough, this information
are actually from exoplanets candidates, and the astronomical community is now working on classifying those ob-
servations to map which ones are actually exoplanets from those who are not. There are several methods to detect
exoplanets and get information from them, as an example, there are:

• Radial velocity

• Transit photometry

• Relativistic beaming

• Gravitation microlensing

and several others. Here, teh transit photometry approach will be used, and a further explanation on this technique will
be presented on the next section. No more will be discussed from the other thecniques, but the reader is free to check it
out how those work. The only interesting subject that most of those has in common is that their collected information
are time series (dynamical information), and most of the techniques presented in this study could be used similarly for
all of them.

For more reference on works regarding the classification of the light curves observations one might check the following
M. Deleuil1, S. Aigrain2, et al.

For more details on the CoRoT mission please check out the ESA CoRoT site.

3

https://www.aanda.org/articles/aa/pdf/2018/11/aa31068-17.pdf
https://sci.esa.int/web/corot

CoRoT Contributions, Release 1.0

4 Chapter 1. Introduction to CoRoT

CHAPTER 2

Problem proposed

Being as concise as possible, the main goal is to use machine learning to automate the classification of CoRoT collected
data, as a way to cluster data that has meaningful information to be analyzed from data that has none. This means that
we want to classify data that present possible exo-planets, from data that has information about something other then
exo-planets.

To provide a brief introduction to the knowledge needed to achieve this goal, we will describe the data set a little bit.
The data set is provided by the repository provided at the web site , where it contains files in a .fits format. Those are
pretty common in the astronomical whereabouts, but not for the machine learning public. In each .fits file, we will
have a light curve time series for a particular CoRoT observation. All observations will have the white light intensity,
some will have the RGB.

Therefore, we are talking about using the transit photometry time series to classify if in this particular observation
there is a chance for the observation be one of an exo-planet, or something else. As an illustration, one will have
time-series data, that will contain the planetary transit information such in

So the features for the machine learning algorithm must be gathered from the time series, and the algorithm must reach
for the probability of this observation be the observation of an exo-planet.

5

http://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLIC_DATA/project-index.html

CoRoT Contributions, Release 1.0

6 Chapter 2. Problem proposed

CHAPTER 3

Pipeline

The preprocessing pipeline consists on four major steps:

• Getting the data - (10%)

• Preprocessing in Python - (20%)

• Feature Engineering - (50%)

• Machine Leaning - (20%)

7

CoRoT Contributions, Release 1.0

Notice

In these items, we introduced the usual percentage of the work amount usually taken for each particular part of a
machine learning project. This is usually the amount when you have features that do not involve time, dynamic
features. . . therefore static information, which is mostly used to happen, such as in problems of customer clustering,
when one has features such

• Age
• Salary
• Address
• . . .

Note that these features do not change over time. Here we have a time series, so we have to somehow extract from
those time series, some static information. So be prepared for the feature engineering part of the pipeline!

8 Chapter 3. Pipeline

CoRoT Contributions, Release 1.0

Warning: Note that the first three pipeline steps will generate a data file, with the processed data for the next step.
The user can choose to either follow each process step and by it self generate and preprocess the data. Or one can
go the google drive link bellow

• Google drive access

and download the already preprocessed data. For example, if the user wants to jump all the three first steps and just
have access to the features for the machine learning algorithm, one can download then from the folder /features in
the google drive.

To get the data on your local machine, first one mush address to the data repository web site where we will have the
soo called level N2 processed data from the CoRoT observations. Those are the most processed versions of the CoRoT
collected data. At this repository, one will find five classes of observations,

• CoRoT bright: the called bright stars (examples of not exo-planets)

• CoRoT targets: the called exo-planets (examples of exo-planets)

• Red giants: the observations classified as red giants (examples of not exo-planets)

• Stars with rotation periods from Affer (not used)

• Stars with rotation periods from Medeiros (not used)

The last two classes will not interest us. We actually will only use the first three collection of data. Those collections
have information of transit photometry or only light curve intensity, furthermore their labels allow us to segregate the
information as not exo-planet and exo-planet. While the last two, provide labels that cannot ensure if the collected
data is from an exo-planet observation or not.

If the user select one of the three categories, it will show a table with several items. Each item is a particular light
curve observation, and the user can select and download any of the curves that he desires.

After that one might also download another class of light curve observations called eclipsing binaries from the data
repository in the Query Forms tab in the FAINT STARS option. There the user will be able to query each curve from
their specific CoRoT Id. Then by searching the stars CoRoT Id from the tables at the CoRoT transit catalog, it is
possible to reach a group of close to 1500 eclipsing binaries.

Note: One interesting aspect of the eclipsing binaries is that their light curves are pretty close to the exo-planets ones.
Therefore it is pretty difficult to cluster eclipsing binaries from exo-planets using only the light curve. This is the most
interesting case study of this project.

9

https://drive.google.com/drive/folders/19kALbQ5m1ppXxGTVMBaWA4KdIE9pmWfM?usp=sharing
http://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLIC_DATA/project-index.html
http://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLIC_DATA/project-index.html
http://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLIC_DATA/project-index.html
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A97

CoRoT Contributions, Release 1.0

After downloading for the three classes (bright stars, confirmed targets and red giants) the user must keep each class
in a particular folder, with the name that the user wants to label each class. As schematized in the figure above.

It is advised to keep a database folder following the structure:

./database

bright_stars
..._1.fits
..._2.fits

..._k.fits

confirmed_targets
..._1.fits
..._2.fits

..._l.fits

eclipsing_binaries
..._1.fits
..._2.fits

..._m.fits

red_giants
..._1.fits
..._2.fits

..._n.fits

10 Chapter 3. Pipeline

CoRoT Contributions, Release 1.0

Drive files access

If the user does not want to go through the process presented above and just want to download the data, already in the
format presented above, it is possible to get it from my google drive, or in the direct download link:

• Google drive access
• Direct download

The files are something close to tens of GB. Since it contains all the raw fits files for the three classes (bright stars, red
giants, confirmed targets and eclipsing binaries).

After getting the data from the online repositories, we need to transform this data into data structures more python
friendly, such as dictionaries, lists, arrays, or into files with more suitable formats then fits files, e.g. pickle files, or
MATLAB files (if one wants to algorithms on MATLAB).

For that, we create here a preprocessing library called Reader that transform the data from the fits files into simple
objects of the class Curve that simplifies the information access, and make it faster, provided that it works with the
so-called memory maps and only save HUD tables that will be necessary for the future. This process reduces the
dataset up to 80% (the data that was something close to 40 GB, is now something close to 7 GB).

The next scheme illustrates the process applied to the data to create this interface from the .fits format into the python
friendly form:

11

https://drive.google.com/drive/folders/19kALbQ5m1ppXxGTVMBaWA4KdIE9pmWfM?usp=sharing
https://drive.google.com/uc?export=download&id=ttps://drive.google.com/drive/folders/19kALbQ5m1ppXxGTVMBaWA4KdIE9pmWfM?usp=sharin

CoRoT Contributions, Release 1.0

From the above scheme, we can see that the process starts from the fits files and after passing through the Reader,
we achieve a structure that with simple calls to the information variables, it is possible to get that variable data in dict
and/or list formats.

After reading the data, and before saving in a format such as the pickle file, we also apply a preprocessing technique
to filter out the noise of the time series. This technique is applied here instead of in the feature engineering step, just
to show the user the importance to understand the feature processing part with an information extraction practical
example. Showing that a simple filtering technique can enable access to several other pieces of information. And by
that, engaging the user to see the next step of the pipeline, which will have several other feature engineering techniques.

The feature engineering process is the part that takes most work in a machine learning project. It is the part where
one must extract meaningful information from the data to provide for the machine learning algorithms. But interesting
enough, one cannot know beforehand what information is actually the best one for the machine learning algorithm.
Most machine learning projects, the data is actually static (does not depend on time) and have a simpler path to be
taken, where the only usual procedure is done in the feature engineering is the common normalization and feature
reduction (when the dimension of the features are very high and the learning algorithm is pretty heavy). But in the
case of time series classification, the user has dynamic data. . . which needs to be transformed to static data, to then go
through the common feature engineering processes.

There are several paths that one might take to get static information from the data when one has a time series in the
hands. Some of the techniques are presented:

• Power spectrum

• Periodograms

• Number of peaks

• Dynamic insights

The first two, are not much than the Fourier representation of the data, which is actually the most characteristic
information of the time series. The second is just commonly used info in the internet tutorials (which is a very noisy
scenario, which will only generate more noisy data). The last one usually is a very powerful approach, in which, we
first use the data to estimate a dynamical model of the time series phenomenon, and then use that model parameter to
cluster each time series. The most interesting part of this approach is that it relies on the leaning algorithm focus to
enhance certain behaviors of the dynamic model and mitigate the effects of others.

Usually, people abuse simple least-squares or deterministic techniques to acquire the parameters of a particular struc-
ture model. Here we will present a stochastic approach of this technique, where we will estimate stochastic and
probabilistic models for the time series, and their parameters will then be used as features for the machine learning
process.

Here the bellow features will be generated for the machine learning algorithm:

• Periodograms

• Bayes marginal likelihood

• Hidden Markov Models

• Latent Dirichlet Allocation

12 Chapter 3. Pipeline

CoRoT Contributions, Release 1.0

The first one is the classical technique (which present several concerns and computation problems, due to the Fourier
algorithms). The second one uses probabilistic Bayes Models parameters as features. The third uses the estimated
parameters for Hidden Markov Models as features. And the fourth one actually is a very complex technique usually
used to cluster text into speech topics, and here is used outside its scope, to check if the topic’s classification also can
be applied to time series dependencies.

Note: Provided that each approach is more unique than the other, here it will not be discussed further more about any
one of them. A more detailed description will be presented in the Feature Engineering step of the documentation.

The machine learning step of the pipeline, does nothing much more than the basics machine learning procedures once
the time series static information is provided. From the last step, simple features where build from the time series.
using the following techniques:

• Periodograms: produces the evenly reshaped power spectrums

• Bayes marginal likelihood: produces the Ridge Bayesian model parameters

• Hidden Markov Models: produces the Markov trasition matrices

And now it is desired to build a machine learning algorithm that will take each one of those features and try to classify
the observation classes. Therefore, we just want to distinguish between the four labels:

• Red giants

• Confirmed targets or exo-planets

• Bright stars

• Eclipsing binaries

The astronomical community show a particular interest in distinguish specifically two of those classes from each
other: the confirmed targets from the eclipsing binaries. This challenge show itself to be appealing because there
is several difficulties in distinguishing the eclipsing binaries and exo planets light curve information using classical
theory. Therefore, having an automate algorithm capable of solving this enigma would be most attractive.

Thence here we present three major algorithms to classify the data from exo-planets and eclipsing binaries. The first
is using the XGBoost library, since it is proven to be a very powerful algorithm in machine learning forums and
competitions, such as Kaggle. Also, some classic algorithms will be used, such as Decision Trees from the scikit learn
packages to compare the boosting feature capability from the XGBoost algorithms, and some powerful mathematical
algorithms such as Support Vector Machines classifiers, which is supposed to be analytically optimal.

All the algorithm will follow the common machine learning path, such as:

• Read the features and labels

• Encode, normalize, reduce features and reshape

• Make train and test data-set

• Build the machine learning model

• Search hyper parameters

13

https://xgboost.readthedocs.io/en/latest/
https://www.kaggle.com/
https://scikit-learn.org/stable/

CoRoT Contributions, Release 1.0

• Train machine learning model

• Validate the model

• Analyse the results

So the reader can understand that for any of the models and any of the features, after the Feature Engineering pipeline,
the algorithm is pretty much the same. Therefore, the price of dealing with time series data, is that one must have the
Feature Engineering pipeline to extract static information from the data, before going through the common machine
learning pipeline.

Note: As in the previous pipeline step, the algorithms will not be further discussed here. If the reader wants, a more
detailed description of each machine learning approach can be found on its respective chapter of the documentation,
with application example.

14 Chapter 3. Pipeline

CHAPTER 4

Some results. . .

To show the capability of the approach presented, checkout the some of the best results obtained with the XGBoost
Classifier algorithm:

In this figure, the confusion matrix of the classifier predictions for the testing dataset is presented. Notice that the
XGBoost algorithm, was able to provide a 93% accuracy on exoplanet labels, and 83% on the eclipsing binaries, as
shown by the above confusion matrix.

4.1 Read .fits raw data

For reading the .fits data-set one may use the utils library. From the utils library, there is a data_helper.
Reader() object, optimized to read the .fits files. Inside a .fits file, usually is found a sctructure with three tables
of type HUD. In this particular case, the three tables teels a history of the data, where the first is the most raw data
possible, then the second is the treated/filtered version of the first table, and the third table is the compressed version
of the information from the second table.

15

CoRoT Contributions, Release 1.0

We are particularly interested in the most informative data-set in a minimal (compressed) manner. Also,
here we do not have the luxury of dealing with big-data problems. . . for that we might need **Spark* or
Hadoop support. Thence, the third table is usually the most interesting one.*

All files from a given folder will be readed and labeled as disered. As an example an advised folder structure is the
following:

./database

bright_stars
..._1.fits
..._2.fits

..._k.fits

confirmed_targets
..._1.fits
..._2.fits

..._l.fits

eclipsing_binaries
..._1.fits
..._2.fits

..._m.fits

red_giants
..._1.fits
..._2.fits

..._n.fits

Inside the database/bright_stars it has all .fits files of class bright stars, in database/
confirmed_targets it has all .fits files of class confirmed exoplanets, in database/eclipsing binaries
it has all .fits files of class confirmed multi transit eclipsing binaries and in database/red_giants it has all .fits
files of class red giants.

All the provided folders are then readed and the data is concatenated into one big list of data_struc.Curve
objects, wich is a pretty helpful interface structure from the astropy.table objects to simple list and dict
variables. Thence, in the variable curves we actually have a list of data_struc.Curve.

[1]: from utils import *

folder_list = ['./database/raw_fits/confirmed_targets',
'./database/raw_fits/eclipsing_binaries',
'./database/raw_fits/red_giants',
'./database/raw_fits/bright_stars']

dread = data_helper.Reader()
curves = dread.from_folder(folder=folder_list[0], label='confirmed targets', index=2)
curves += dread.from_folder(folder=folder_list[1], label='eclipsing binaries',
→˓index=2, items=40)
#curves += dread.from_folder(folder=folder_list[2], label='red giants', index=2)
#curves += dread.from_folder(folder=folder_list[3], label='bright stars', index=2)

16 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

INFO:reader_log:Reader module created...
INFO:reader_log:Reading 37 curve packages...
INFO:reader_log:Done reading!
INFO:reader_log:Reading 40 curve packages...
INFO:reader_log:Done reading!

Importing the utils as shown, one is actually import all the following packages:

• data_helper with Reader Object

• data_struc with Curve Object

• visual with several plot functions

And as an example, the visual package just compress the bokeh code library, since it is a pretty expansive code, for
example, to make a line plot without visual, one should do something like

from bokeh.palettes import Magma
from bokeh.layouts import column
from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource
from bokeh.io import output_notebook, push_notebook

p = figure(
title="Some title",
plot_width=400,
plot_height=600)

Style the figure image
p.grid.grid_line_alpha = 0.1
p.xgrid.band_fill_alpha = 0.1
p.xgrid.band_fill_color = Magma[10][1]
p.yaxis.axis_label = "Some label for y axis"
p.xaxis.axis_label = "Some label for x axis"

Place the information on plot
p.line(x_data, y_data,

legend_label="My legend label",
line_width=2,
color=Magma[10][2],
muted_alpha=0.1,
line_cap='rounded')

p.legend.location = "right_top"
p.legend.click_policy = "disable"

show(p)

and the same can be achieved using visual, just as follows

[2]: p = visual.line_plot(curves[25]["DATE"],
curves[25]['WHITEFLUXSYS'],
legend_label='Raw Light Curve',
title='Example curve plot',
y_axis={'label': 'Intensity'},
x_axis={'type': 'datetime',

(continues on next page)

4.1. Read .fits raw data 17

CoRoT Contributions, Release 1.0

(continued from previous page)

'label': 'Date'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

4.2 Preprocessing data

The preprocessing part of this analysis will include the preparation of the light curve data for each observation and
saving both the original data, such as the preprocessed data in a more suitable data format for Python users. The main
goal is to read the data from the .fits file (already done with data_helper.Reader()), filter the data to remove
dynamical noise, and than save in a suitable format such as .pickle, or .mat for those in favor. . .

Here is the step where we will filter the data. To do that, first we must choose between the two possible paths

• Continuous time filters

• Discrete time filters

A practice advice, it is always preferable discrete time filtering, because the routines are simpler and
more efficient. . . but this is not always possible when dealing with several time series. Fortunately,
here it is possible! To go with the discrete approach, we must check if all time series has a close
mean sample time, with low variance. If not, we must first resample the time series, and then use
discrete filtering techniques on the data. Do not try, to apply discrete filtering techniques on analog
data (without a consistent sample time), otherwise you will apply a technique that is not a linear
transfomation on the data, and therefore, you will be, by hand, introducing noise to the data.

So first, lets check the sample time of the series, and after filter the high frequency noise from the data. The usefulness
of the filtering of the time series, will be shown in the final of the document, where a feature extraction technique will
be applied just as an example on how the denoised time series is so necessary.

4.3 Resampling series

4.3.1 Sample time distribution

To analyse the time sample of the series, one can do a box plot for each time-series curve. At each box plot it is
represented the distribution of the diference t[k] - t[k-1] for k representing each sample of the time-series and
t the sampled time.

[3]: import numpy as np
from datetime import datetime

item = 0
values, labels = [], []
for curve in curves:

diff_time = np.diff(curve["DATE"])
values += [x.total_seconds() / 60 for x in diff_time]
labels += [str(item) for x in diff_time]

(continues on next page)

18 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

item += 1
Include comment here
to enhance the outliers

p = visual.box_plot(values, labels, y_range=(8.515, 8.555),
title='Average sample time within curves',
y_axis={'label': 'Sample time (min)'},
x_axis={'label': 'Curves'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

4.3.2 Resample time series data

Since the time sample time do not vary that much from one light curve to another, not considering the outliers. . .
One can create the sample time as the mean of the median and then resample each time series using this found value.

One also might say that those time series, does not need resampling, since all the series present a close
sample time mean. But notice that the above figure has the ‘‘y‘‘ axis clipped from ‘‘[8.515, 8.555]‘‘. If
the user comment the line described on the above cell, one will see that there are some worrying outliers.
It is because of those outliers that a resampling technique must be applied!

[4]: import statistics as stt

time_sample = round(stt.mean(values), 2)

print("The time sample is now {} minutes.".format(time_sample))

The time sample is now 8.56 minutes.

Now that we have a feasible approximation of the time sample, it is possible to use this reference to reseample each
time series to this single sample rate.

[5]: import scipy.signal as scs

data = {'y':[], 't':[], 'ti':[], 'lab':[]}
for curve in curves:

Get the time information
init_time = curve['DATE'][0]
data_vector = curve['WHITEFLUXSYS']
time_vector = [(t - init_time).total_seconds() / 60 for t in curve['DATE']]
Compute the amount of points
n_points = int(time_vector[-1] // time_sample)
Compute the resampled time series
res_data, res_time = scs.resample(data_vector, n_points, time_vector)
data['y'].append(res_data)
data['t'].append(res_time)
data['ti'].append(init_time)
data['lab'].append(curve.labeler)

To check if the new time sample was correctly placed and there is no more samples with outlier time samples. One
can use the histogram of the time sample variation of all light curves to ensure the consistency of the sample time.

4.3. Resampling series 19

CoRoT Contributions, Release 1.0

[6]: t_std = [stt.stdev(np.diff(t)) for t in data['t']]
hist, edges = np.histogram(t_std, density=True, bins=3)

p = visual.hist_plot(hist, edges,
title='Sample time consistency',
y_axis={'label': 'Density'},
x_axis={'label': 'Sample time difference (min)'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

4.4 Filtering series

The main goal here is to remove the random signals that are contributing to the time series information, the objective
is actully to clean the time series from highly spread random variables. This is pretty interesting, because the applied
filtering technique will not disturb the meaningful information of the series, since it will only mitigate the random
information effects on the series. So lets see the time series:

[7]: index = 5 # Curve index

p = visual.line_plot(data['t'][index],
data['y'][index],
legend_label='Raw Light Curve',
title='Light Curve',
y_axis={'label': 'Intensity'},
x_axis={'type': 'datetime',

'label': 'Date'})
visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

One can see that the data is too noisy, from the low variant part of the signal. . . To reduce the amount of noise on
data we might use the PyAstronomy library that has some interesting smoothing algorithms, e.g. the hamming filter
that will be used following. We can also change the window size considered for filtering the light curve, here as an
example we are using window = 33 samples.

Note that we are correcting the grammar and talking about smothing and not just filtering the data. In
smothing techniques, it is spected that the provided data is in a discrete format. Because, actually, a
mathematical filtering is applied. . . not a frequency filter. We are trying to reduce the influence of random
variables with highly spread frequency behavior from the data.

[8]: from PyAstronomy import pyasl

window = 33
algorithm = 'hamming'
sm1 = pyasl.smooth(data['y'][index], window, algorithm)

p = visual.line_plot(data['t'][index],
sm1,

(continues on next page)

20 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

legend_label='Raw Light Curve',
title='Light Curve',
y_axis={'label': 'Intensity'},
x_axis={'label': 'Time index'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Now we are talking!! Without the noise is possible to observe the actual variation of the time series, when the eclipses
appear. To see the importance of the filtering process applied above, let’s try to do some feature engineering. . . and
use the data to extract some information of the process.

4.5 Application example

We know, that the series from database/confirmed_targets are series that highly represents the transit pho-
tometry, since it has pronunced eclipses. So let’s try, to use the time series data to create an algorithm to determine the
moments of eclipse on the time series.

The main idea is to create a binary label for the eclipse pattern from the light curve. For that, we could check the light
curve derivative to analyse the time series variation along time. Usually when you have a high variation, the chances
of having a eclipse is bigger. As an example, let’s plot the derivative of one particular light curve, index = 2. So
for that, lets plot both the derivative of the non filtered time series, and the filtered one, to see if we can take anything
out of these informations.

[9]: p = visual.line_plot(data['t'][index][1:],
np.diff(data['y'][index])/time_sample,
legend_label='Derivative of Light Curve',
title='Light Curve Derivative',
color_index=4,
y_axis={'label': 'Intensity'},
x_axis={'type': 'datetime',

'label': 'Date'})
p1 = visual.line_plot(data['t'][index][1:],

np.diff(sm1)/time_sample,
legend_label='Derivative of Light Curve',
title='Light Curve Derivative',
color_index=4,
y_axis={'label': 'Intensity'},
x_axis={'label': 'Time index'})

visual.show_plot(p, p1)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

From these graphs it is possible to see, that with a simple threshold selection it is possible to infer the regions where
we have the eclipses, in the filtered derivative version.

More practice guide. . . When dealing with time series, the most simple linear transformation (e.g. a
derivative) could enhance the data noise in a very powerfull way. Interesting enough, the noise didn’t
seem to be that big on the time series plot before right?! So after appling a simple linear trasnformation,
the noise increased to be bigger to the biggest actual value of the data. Note the amplidutes of the highest

4.5. Application example 21

CoRoT Contributions, Release 1.0

value on the filtered version, and the not filtered one. . . in the not filtered version, one can only see noise!!
> So imagine if you pass this not filtered data trough a complex neural network, that will apply several non
linear transformation to your data. . . we are talking about CAOS! Even if you think you have interesting
results, your algorithm is actually working in a very sensible place, that eventually he will go unstable.

Another topic to realise. . . the most treatening noise that one can have in a time series is this called white
noise. This noise exists in all frequencies and only statistical and mathematical techniques that obey the
law of large numbers can deal with it. And for that, you must have discrete time data!

Then, to introduce some statistics perspective to the result, and make it more automatic, the mean and standard de-
viation of the light curve variation is used to determine possible decision thresholds, that could infer the moments of
initialization of the eclipse, and the finalization. . .

For that, lets compute the mean of the derivative and the standard deviation

[10]: variation_mean = np.average(np.diff(sm1)/time_sample)
variation_stan = np.std(np.diff(sm1)/time_sample)

print("The varaition signal has a mean around {}".format(round(variation_mean,3)))
print("And a standard deviation around {}".format(round(variation_stan,2)))

The varaition signal has a mean around 0.035
And a standard deviation around 8.4

Therefore, one can create a threshold close to ±𝜎, ±2𝜎 and ±3𝜎, as one can see in the next bellow figure. This
thresholds will inform if there was a big varaiation of the time series.

[11]: size = data['t'][index][1:].shape[0]
one_std = variation_stan * np.ones((size,))

x_data = data['t'][index][1:]
y_data = [np.diff(sm1) / time_sample,

1*one_std, 2*one_std, 3*one_std, -1*one_std, -2*one_std, -3*one_std]
legends= ['Derivative', '68.0%', '95.0%', '99.7%', '68.0%', '95.0%', '99.7%']
colors = [8, 1, 3, 5, 1, 3, 5]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Light Curve Derivative',
color_index=colors,
y_axis={'label': 'Intensity'},
x_axis={'label': 'Time index'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Now one can create a listener to check each peak and create the respective eclipse label. First it is necessary to
check two states: the first is the state of in_eclipse and the second the out_eclipse. Which will map when
the series goes into one eclipse, then out of the eclipse.

[12]: trigger, out_eclipse = False, True # because it starts out of the eclipse
light_variation = np.diff(sm1) / time_sample
light_variation = light_variation.tolist()
threshold = [-1*variation_stan, 1*variation_stan]

light_state = [False]
(continues on next page)

22 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

size = len(light_variation)
for k in range(size):

if out_eclipse:
if light_variation[k] < threshold[0]:

out_eclipse = False
else:

if (light_variation[k-1] > threshold[1]) \
and (light_variation[k] < threshold[1]):
out_eclipse = True

light_state.append(out_eclipse)

With those results, lets see if we can plot the light curve and highlight the moments where we have a suposed eclipse.

[13]:
in_eclipse = np.ma.masked_where(np.array(light_state), sm1)
out_eclipse = np.ma.masked_where(~np.array(light_state), sm1)

x_data = data['t'][index]
y_data = [in_eclipse, out_eclipse]
legends= ['In eclipse', 'Out eclipse']
colors = [3, 7]

p1 = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Light Curve Derivative',
color_index=colors,
y_axis={'label': 'Intensity'},
x_axis={'label': 'Time index'})

visual.show_plot(p1, p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Checkpoint!! One thing that we also need to do, is change the index variable and check each exoplanet curve and
see if we could ensure that this algorithm works for most of then. And also with the bright stars and red giants. . .

After that we are ready to engage on more complex analysis, such as statistical approaches and machine learning
techniques!

*Notice one interesting thing: using the derivative approach, the steady state information of the
light curve is automatically discarded! This is a hell of deal, since it is already a filter that mitigates
the influence of low frequency siganls and highlight the effect of high frequency ones!!!! O.o Crazy!!
Since we only want to analyse the bahavior of the high descent variation, when there are eclipses,
the signal derivation is the approach that most highlight this feature. :)*

4.6 Generation algorithms

Here, the algorithm presented above is implemented for each time serie curve and then we generate a file with the
pre-processed data. So for that we need to run the following the next procedure. Since all time series are already
resampled, only the procedure of filtering and labelling are necessary to be made for all time series. This is the
function, that provided the resampled time series, it returns a the filtered and labeled data:

4.6. Generation algorithms 23

CoRoT Contributions, Release 1.0

[14]: def filter_series(data=None, window=33, algorithm="hamming"):
'''

This is the function used to filter all time series readed
in a batch process. And it could take some time to run...

'''
filtered_curves = {'r':[],'y':[],'t':[],'i':[], 'lab':[]}
for curve, time, init in zip(data['y'], data['t'], data['ti']):

filt_curve = pyasl.smooth(curve, window, algorithm)
filtered_curves['r'].append(curve)
filtered_curves['y'].append(filt_curve)
filtered_curves['t'].append(time)
filtered_curves['i'].append(init)

filtered_curves['lab'] = data['lab']
return filtered_curves

[15]:
filtered_data = filter_series(data=data)

Now that we have the filtered data, we could use the derivative algorithm to label each time series. . .

[]: def label_series(data=None, time_sample=None, std_num=3):
'''

This is the function used to label the eclipses part of
the time series, using the filtered lgiht curve data in
a batch process. And it could take some time to run...

'''
data['eclipse_labels'] = []
for curve in data['y']:

derivative = np.diff(curve) / time_sample
mean, stan = np.mean(derivative), np.std(derivative)
derivative, threshold = derivative - mean, std_num * stan
light_state, out_eclipse = [False], True
for k in range(len(derivative)):

if out_eclipse:
if derivative[k] < - threshold:

out_eclipse = False
else:

if (derivative[k-1] > threshold) \
and (derivative[k] < threshold):
out_eclipse = True

light_state.append(out_eclipse)
data['eclipse_labels'].append(light_state)

return data

[]:
filtered_data = label_series(data=filtered_data, time_sample=time_sample)

Know we have some structure data in the filtered_data variable that is actually pretty suitable for Python users,
which is composed only by dict, list, array and datetime. And follows this particular structure:

{
'r': [

array(...),
array(...),

(continues on next page)

24 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

array(...)
],
'y': [

array(...),
array(...),

array(...)
],
't': [

array(...),
array(...),

array(...)
],
'i': [

datetime,
datetime,

datetime
],
'lab': [

str,
str,

str
],

}

where each key is:

• r : The raw intensity of each curve

• y : The filtered intensity of each curve

• t : The time index initialized in 0 of each curve

• i : The time of the first sample of each curve

• lab: The string with the label of this curve

As an example, to fetch the filtered intesity samples of the third curve, one just:

data = filtered_data['y'][2]

4.7 Save pre-processed data

4.7.1 Save as .mat file

This is just a function that will save the filtered data as a MATLAB data file:

[]: import scipy.io as sio

file_path = './filtered.mat'

(continues on next page)

4.7. Save pre-processed data 25

CoRoT Contributions, Release 1.0

(continued from previous page)

sio.savemat(file_name=file_path, mdict=filtered_data)

4.7.2 Save as .pickle file

This is a fucntion to save the data as a pickle file to save the dictionary:

[]: import pickle

file_path = './filtered.pkl'

output = open(file_path, 'wb')
pickle.dump(filtered_data, output)
output.close()

4.8 Reading the data

To go trough with this example, one might have or a

• filtered.pkl - pickle format file

• filtered.mat - matlab format file

as generated in the previous step of the pipeline. Note that, we are now ready to generate features for the machine
learning algorithms. The biggest challenge is to get static features out of the time series (wich is a dynamic data). Here
we will approach three main static feature generation paths:

• Frequency analysis with periodograms

• Naive Bayes likelihood parameters

• Markov transition probability matrix

All of these three features will be further used as static data for the machine learning algorithms to learn how to classify
the light curves as each class. So first, it is necessary to read the preprocessed/filtered data from the last pipeline step:

Note that we must have the data preprocessed and labeled as exo-planets and not exo-planets. If the user
does not have this file already, it just need to run follow trough the last pipeline step procedures, or one
can download one version of the preprocessed data from: - Google drive access

[1]: import pickle

file_path = './filtered.pkl'
with open(file_path, 'rb') as f:

curves = pickle.load(f)

After, lets import the utils package with the support algorithms. . .

[2]: from utils import *

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

26 Chapter 4. Some results. . .

https://drive.google.com/drive/folders/19kALbQ5m1ppXxGTVMBaWA4KdIE9pmWfM?usp=sharing

CoRoT Contributions, Release 1.0

Just plot an example time series to get a notion on the data obtained from the pickle (.pkl) file generated from the
previous study script, and for that the utils library will be imported to take advantage of its visual functionality:

[3]: from utils import *
from datetime import datetime
from datetime import timedelta

index = 8

time_in_days = [curves['i'][index]
+ timedelta(minutes=time) for time in curves['t'][index]]

x_data = [time_in_days, time_in_days]
y_data = [curves['r'][index], curves['y'][index]]
legends= ['Raw Light Curve', 'Filtered Light Curve']
colors = [2, 5]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Light Curve Example',
color_index=colors,
y_axis={'label': 'Intensity'},
x_axis={'label': 'Date (m/dd)',

'type': 'datetime'})
visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Just for ilustration. . . lets see how much samples we have in each curve. This gives the notion on how much data
there is in each curve. From that it is possible to realise how much time the next algorithms will take to generate the
necessary information.

[4]: sizes = [len(curve) for curve in curves['y']]
x_values = [k+1 for k in range(len(sizes))]
sizes.sort(reverse=True)

p = visual.line_plot(x_values, sizes,
legend_label='Dimensions',
title='Curves dimensions',
color_index=2,
y_axis={'label': 'Sizes'},
x_axis={'label': 'Curve index'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Compute some important constants that will be used during the analysis, such as mean sample time and sample
frequency.

[5]: sample_time = curves['t'][0][1] - curves['t'][0][0] # minutes
sample_freq = 1 / (60 * sample_time) # hertz

print("The series have a time sample of {} minutes, consequently a sample frequency
→˓of {} Hz".format(round(sample_time,2), round(sample_freq,6))) (continues on next page)

4.8. Reading the data 27

CoRoT Contributions, Release 1.0

(continued from previous page)

The series have a time sample of 8.56 minutes, consequently a sample frequency of 0.
→˓001946 Hz

4.9 Feature: Frequency response

4.9.1 Introduction

One must know that theorically the most characteristic representation of a particular signal, would be its Fourier
spectrum. If the real life signals were actually simple, it would be pretty simple to characterize those signals by their
frequency spectrum. But unfortunately the real world signals are actully filled with noise from several natures.

So, if you want to get the most informative static information of a dynamic signal, it would be the power spectrum
of this signal in the frequency domain without the undesired noise. In this chapter, it is developed an algorithm that
attempt to find this representation for each light curve and adapt this information to be further used as features for
machine learning algorithms.

Select one curve to create the frequency analysis, let’s say the curve indexed as index = 5. We use that curve as an
example to create the routine to create time-series power spectrum feature for the machine learning algorithms. Later,
a generation algorithm will be presented, which will properly reproduce this process for all handle light curves. For
that matter, we first present the curve:

[6]: index = 5

time_in_days = [curves['i'][index]
+ timedelta(minutes=time) for time in curves['t'][index]]

x_data = [time_in_days, time_in_days]
y_data = [curves['r'][index], curves['y'][index]]
legends= ['Raw Light Curve', 'Filtered Light Curve']
colors = [2, 5]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Light Curve Example',
color_index=colors,
y_axis={'label': 'Intensity'},
x_axis={'label': 'Date (m/dd)',

'type': 'datetime'})
visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

4.9.2 Spectrum generation

Then we can use the signal library from scipy to create the Periodogram or also called as the Spectrogram of this
time series. We will create both the frequency information for the filtered signal, and the original data saved from the

28 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

last analysis, just to highlight the information removed with the filtering technique.

[7]: import scipy.signal as ssg

freq, spectra = ssg.periodogram(curves['r'][index],
fs=sample_freq, scaling='density')

ffreq, fspectra = ssg.periodogram(curves['y'][index],
fs=sample_freq, scaling='density')

efreq, espectra = ssg.periodogram(curves['y'][index]-curves['r'][index],
fs=sample_freq, scaling='density')

x_data = [freq, ffreq]
y_data = [spectra, fspectra]
legends= ['Raw LC Spectrum', 'Filtered LC Spectrum']
colors = [2, 5]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Light Curve Frequency Spectrum',
color_index=colors,
y_axis={'label': 'Magnitude'},
x_axis={'label': 'Frequency (Hz)',

'type': 'log'})
p1 = visual.line_plot(efreq, espectra,

legend_label='Difference spectra',
title='Spectrum of the filtered out noise',
color_index=3,
y_axis={'label': 'Magnitude'},
x_axis={'label': 'Frequency (Hz)',

'type': 'log'})

visual.show_plot(p, p1)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

From here, one might see that the filtering technique applied on the last analysis, only remove high
frequency compenents from the data. We don’t know yep if the removed information is important or not
for future analysis with machine learning, therefore, both frequency responses will be saved as feature for
further analysis.

4.9.3 Detrended spectrum

But before generating the proposed feature for the machine learning, we must first present another possible process of
the signal that might be relevant for further analysis. The DC level of the signal, usually represents the 0 Hz component
of the frequency spectrum, and does not provide any dynamic meaningful information of the data. Therefore, it is
common sence to first remove the so called trend that composes the DC level of the signal. This process is also called
detrending of the signal. And it is pretty simple to be applied using the signal library from scipy.

[8]: import scipy.signal as ssg

detrended_data = ssg.detrend(curves['y'][index], type='linear')

(continues on next page)

4.9. Feature: Frequency response 29

CoRoT Contributions, Release 1.0

(continued from previous page)

time_in_days = [curves['i'][index]
+ timedelta(minutes=time) for time in curves['t'][index]]

p = visual.line_plot(time_in_days, curves['y'][index],
legend_label='Raw Light Curve',
title='Light Curve Raw',
color_index=2,
y_axis={'label': 'Intensity'},
x_axis={'label': 'Time (dd/mm/yy)'})

p1 = visual.line_plot(time_in_days, detrended_data,
legend_label='Detrended Light Curve',
title='Light Curve Detrended',
color_index=4,
y_axis={'label': 'Intensity'},
x_axis={'label': 'Time (dd/mm/yy)'})

visual.show_plot(p, p1)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

The influence on the periodogram can be shown by just generating once more the periodogram of the detrended signal
and the previous one, with DC level influence.

[9]: freq, spectra = ssg.periodogram(curves['y'][index], fs=sample_freq, scaling='spectrum
→˓')
ffreq, fspectra = ssg.periodogram(detrended_data, fs=sample_freq, scaling='spectrum')
efreq, espectra = ssg.periodogram(detrended_data-curves['y'][index], fs=sample_freq,
→˓scaling='spectrum')

x_data = [freq, ffreq]
y_data = [spectra, fspectra]
legends= ['Raw LC Spectrum', 'Detrended LC Spectrum']
colors = [2, 5]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Light Curve Spectrum',
color_index=[2, 5],
y_axis={'label': 'Magnitude'},
x_axis={'label': 'Frequency (Hz)',

'type': 'log'})
p1 = visual.line_plot(efreq, espectra,

legend_label='LC Difference Spectrum',
title='Difference Spectrum',
color_index=5,
y_axis={'label': 'Magnitude'},
x_axis={'label': 'Frequency (Hz)',

'type': 'log'})
visual.show_plot(p, p1)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Interesting enough, this is the spectrum of the time series analysed (index=5). Of course we will detect several

30 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

highly evidenced frequency components, because the time series is clearly periodic. That is the most informative data
that we could get from this time series using signal and dynamic systems theory.

One might see that the information removed by using the detrend technique only removes low frequency
information in a smooth way. It is necessary to be carreful when using filtering tehcniques, so that no
nonlinear and aggressive techniques are applied to the data. Those aggressive techniques are usually not
practical and might result on unreal phenomenon on the data.

4.9.4 Resample spectrum

One might notice that the spectrogram will not have the same resolution for each feature. . . This is the biggest problem
on computing the time series power spectrum: the dimension inconsitency produced by the computation techniques to
craft the power spectrum. Usually those algorithms rely on time series windows (remember the convolution process)
to estimate the parameters of the Fourier representation of the series. Each time series has a particular number of
samples and windows sizes with their sweep space, and those controls the build power spectrum resolution. Because
of this, each light curve will have a particular power spectrum resolution.

It is therefore, necessary to create an algorithm able to reshape or resample those power spectrum to an unique reso-
lution. This is necessary because most machine learning algorithms only deal with constant feature dimensions. To
achieve this goal, it is introduced the resample_freq_data function.

[10]: import scipy.signal as ssg
from PyAstronomy import pyasl

def resample_freq_data(data=None,
upper_sample=True,
window=13,
algorithm='hamming'):

output_data = list()
Get the maximun and minimun frequencies, and
the resolution of each feature
fmax, fmin, size = [], [], []
for feat in data['freq']:

fmax.append(feat.max())
fmin.append(feat.min())
size.append(len(feat))

Compute the high and low resolution step for
the resampling
high_step = (max(fmax) - min(fmin)) / max(size) # high resolution
low_step = (max(fmax) - min(fmin)) / min(size) # low resolution
Define the cutoff frequency to limit the
spectrum data set, adn compute the new
signal resolution based on the steps
up_cut_freq = min(fmax)
down_cut_frea = max(fmin)
high_resolution = up_cut_freq / high_step
low_resolution = up_cut_freq / low_step
Compute the resample of each feature
compact = zip(data['spec'], data['freq'])
for spec, freq in compact:

Find the closest index to the cut
off freq, to remove the information
uspec, ufreq = spec, freq
if max(freq) > up_cut_freq:

freq_diff = [abs(f - up_cut_freq) for f in freq]

(continues on next page)

4.9. Feature: Frequency response 31

CoRoT Contributions, Release 1.0

(continued from previous page)

cut_index = freq_diff.index(min(freq_diff))
uspec = spec[:cut_index+1]

Compute the resampled signal for
high or low resolution
if upper_sample:

sig_size = round(high_resolution)
else:

sig_size = round(low_resolution)
Resample the spectrum
uspec = ssg.resample(uspec, int(sig_size))
Smooth the resampled spectrum
uspec = pyasl.smooth(uspec, window, algorithm)
Save the info into the output signal
output_data.append(uspec[:-10])

return output_data

4.9.5 Generation algorithm

Lets run all the preprocessing for all the light curve time series, and build the feature variable to be saved for the
machine learning step of the pipeline:

[11]: detrend = True
filtered = True

Detrend and filter all light curve
time series data
size = len(curves['r'])
aux_data = {

'freq': [],
'spec': []

}
for item in range(size):

If we want a filtered data
if filtered:

data = curves['y'][item]
else:

data = curves['r'][item]
If we want a detrended data
if detrend:

data = ssg.detrend(data, type='linear')
Create the periodogram
freq, spec = ssg.periodogram(data, fs=sample_freq, scaling='spectrum')
Save on the current variable
aux_data['freq'].append(freq)
aux_data['spec'].append(spec)

Build the machine learning data
structure to be saved on pickle file
ml_data = {

'features': {
'spec': resample_freq_data(aux_data,window=23)

},
'labels': curves['lab']

}

Just to guarantee the quality of the resampled variables, lets just plot the resampled one and the original spectrums

32 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

[12]: import numpy as np

index_plot = 15

Resample the frequency data
resolution = len(ml_data['features']['spec'][index_plot])
init = aux_data['freq'][index_plot][0]
final = aux_data['freq'][index_plot][-1]
rfreq = np.linspace(init, final, resolution)

Create the plot data
x_data = [aux_data['freq'][index_plot], rfreq]
y_data = [aux_data['spec'][index_plot], ml_data['features']['spec'][index_plot]]
legends, colors, lw = ['Original', 'Resampled'], [2, 8], [3, 2]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Spectrum validation',
color_index=colors,
line_width=lw,
y_axis={'label': 'Magnitude'},
x_axis={'label': 'Frequency (Hz)',

'type': 'log'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

4.9.6 Save feature

Here we will modify the feature in a way to be ready for machine learning algorithm take this information as features
and labels.

[]: file_name = './features/freq_data/freq_data.pkl'

output = open(file_name, 'wb')
pickle.dump(ml_data, output)
output.close()

4.10 Feature: Naive Bayes likelihood

To create the Naive Bayes marginal likelihood approach, we just will try to use the bayesian theory for optimal filtering.
The main structure here used will be the Bayes Ridge Regression, from the sklearn library. The main idea is to
create a regression based model for each curve, and use the estimated parameters of each model as feature for machine
learning classification. The regression model can be represented as

𝑝(𝑦|𝑋,𝜔, 𝛼) = 𝒩 (𝑦|𝑋𝜔,𝛼)

4.10. Feature: Naive Bayes likelihood 33

CoRoT Contributions, Release 1.0

In the ridge regression, is assumed the prior value for the cofficient 𝜔 to be given by a spherical Gaussian, leading the
regression problem to be mapped as

𝑝(𝜔|𝜆) = 𝒩 (𝜔|0, 𝜆−1𝐼𝑝)

The model estimation is just a matter of finding the set of 𝜔, that minimizes the ↕2 norm for a provided user defined
parameter 𝜆. The 𝜔 values are the most characteristic information of each light curve. Thence, here we use those
values as features to train the classifier to cluster the light curve classes.

There are some discussions that one might include for this approach. One might ask:

• What question should the bayes alorithm answer?

• It will be just a regression model pro predict the next step?

• It will be a regression model to predict model tendencies?

The best answer for that will appear when one uses the features provided from each path taken to try to classify the
model. We cannot say before hand what feature will be best or not. . . Therefore, we must create some fetaure and
then use their information to try to cluster the curve data.

4.10.1 Regression model

In both approaches is necessary to create a regression model, with chosen order 𝑛𝑥. To do that, one can use a function
such as this:

[13]: def build_regressor(data=None, order=6, norm=True):
nx = order
outputs = []
regressors = []
for curve in data:

phi, y = [], []
size = len(curve)
Normalize the curve data
serie = curve
if norm:

serie = (curve - min(curve)) / (max(curve) - min(curve))
Build the regressor model
for k in range(size-nx):

phi.append(serie[k:k+nx])
y.append(serie[k+nx])

Save the build regressors
regressors.append(phi)
outputs.append(y)

return regressors, outputs

4.10.2 Next step parameters

Here we will create the regression problem for each light curve, and estimate the respective rigde bayes parameters.
For that the linear_model library from sklearn will be used, specific the BayesianRidge object. To both
create the regressor, for each light curve and then train the model, one must do the following

Usually it is interesting to normalize the data before fitting a regression model.

[14]: from sklearn import linear_model

(continues on next page)

34 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

bayes_data = {
'features': {

'params': []
},
'labels': curves['lab']

}

Build the regression model
regr, out = build_regressor(curves['y'], order=20, norm=False)

Estimate the bayes regression model
for each set of regressor and outputs
for phi, y in zip(regr, out):

Create the model
clf = linear_model.BayesianRidge()
Estimate the model
clf.fit(phi, y)
Save the parameters
bayes_data['features']['params'].append(clf.coef_)

4.10.3 Save feature

Here we just save the feature variable in a particular pickle file

[]: file_name = './features/bayes_data/nx_6/bayes_data.pkl'

output = open(file_name, 'wb')
pickle.dump(bayes_data, output)
output.close()

4.11 Feature: Markov Hidden Models

Here we will develop a time series prediction algorithm using the so called Hidden Markov Models. They are not
much more than a state space model without the input signal. . . a model that freely vary provided an initial condition.
The model can be simply mapped as

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘)

where our job is to determine the parameter matrix 𝐴. Note that 𝑥(𝑘) has dimension 𝑛𝑥 wich is the model complexity,
and user provided.

Here we actully will use a the library called `hmmlearn <https://hmmlearn.readthedocs.io/en/latest/
tutorial.html>‘__ to estimate the model.

One might wonder the reason to estimate this prediction model. The idea is simple, the matrix 𝐴 will caracterize the
main behavior of the dynamic system, and then it is possible this summarized information of the time series (the 𝐴
matrix) as feature for the classification machine learning algorithm further used.

4.11. Feature: Markov Hidden Models 35

https://hmmlearn.readthedocs.io/en/latest/tutorial.html
https://hmmlearn.readthedocs.io/en/latest/tutorial.html

CoRoT Contributions, Release 1.0

4.11.1 Preprocessing data

But for that to work, we need to maintain the parameters of each estimated 𝐴 matrix as close as possible to each other.
This means that we first need to preprocess the data in a manner to maintain the same signal power within each curve.
This can be done by detrending the time series, and then normalizing their values.

To detrend the data we will use the same library previouly used above from scipy.signal.

[15]: import scipy.signal as ssg

Create the feature data to be
further saved for machine learning
hmm_data = {

'y': [],
't': curves['t'],
'labels': curves['lab'],
'features': {

'prob_matrix': []
}

}

Flags for the pipeline
norm = False

Pre processing pipe line
for curve in curves['y']:

Detrend time series
series = ssg.detrend(curve, type='linear')
Normalize (0, 1) time series
if norm:

mins, maxs = min(series), max(series)
series = (series - mins) / (maxs - mins)

Add time series to processing data
hmm_data['y'].append(series)

4.11.2 Estimate HMM

Now we can just use the algorithm created to determine the Hidden Markov Model for each curve time series. For
each curve, we can fetch the parameter called transmat_ which is actually the transition probability matrix of the
state space model, here known as 𝐴. From that we will have a 𝐴 matrix for each curve. . . with model complexity
equal to 𝑛𝑥 = n_components, therefore making 𝐴 ∈ ℜ(𝑛𝑥,𝑛𝑥).

[16]: import numpy as np
from hmmlearn import hmm

Model parameters
cfgs = {

'n_components': 8,
'covariance_type': 'full',
'n_iter': 100

}

Compute each probability matrix
for curve_data in hmm_data['y']:

Create the hmm model
remodel = hmm.GaussianHMM(**cfgs)

(continues on next page)

36 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

Fit the hmm model to data
remodel.fit(np.array(

curve_data).reshape(len(curve_data),1))
Recover the probability matrix
hmm_data['features']['prob_matrix'].append(remodel.transmat_)

4.11.3 Save feature

Here we just save the feature variable in a particular pickle file

[]: file_name = './features/hmm_data/nx_8/hmm_data.pkl'

output = open(file_name, 'wb')
pickle.dump(hmm_data, output)
output.close()

4.11.4 Download features

If the user does not want to run this pipeline step algorithm (since it takes time) one can just try to download the
features, in several different setups from the Google Drive:

• Google drive access

In this drive the user will find a repository called features, that will have this structure:

./features

bayes_data
nx_4

bayes_data.pkl
norm_bayes_data.pkl

nx_6
bayes_data.pkl
norm_bayes_data.pkl

nx_20
bayes_data.pkl
norm_bayes_data.pkl

freq_data

freq_data.pkl

hmm_data
nx_4

hmm_data.pkl
norm_hmm_data.pkl

nx_6
hmm_data.pkl
norm_hmm_data.pkl

nx_20
hmm_data.pkl
norm_hmm_data.pkl

4.11. Feature: Markov Hidden Models 37

https://drive.google.com/drive/folders/19kALbQ5m1ppXxGTVMBaWA4KdIE9pmWfM?usp=sharing

CoRoT Contributions, Release 1.0

Here the frequency spectrum approach only has one feature type to be used. But the Hidden Markov Model and the
Naive Bayes likelihood has several one, provided the combination of the parameters 𝑛𝑥 and the possibility to normalize
or not the light curve time series. Thence, if the user want the parameters for the model with 𝑛𝑥 = 8, for the case
considering the normalized data, it will be found at /features/hmm_data/nx_8/norm_hmm_data.pkl for
the hidden markov model approach, and /features/bayes_data/nx_8/norm_bayes_data.pkl for the
naive bayes.

4.12 XGBoost Classifier

The first algorithm that we will use is the XGBoost with its classic classifier. This is the classic simple algorithm from
XGBoost library, further a more complex one will be used. This algorithm will be used for each generated feature,
namelly:

• Periodograms

• Bayes Similarity

• Hidden Markov Models

All approaches will pass trough the common machine learning pipeline, where we must:

• Normalize the data (if necessary)

• Divide the data between trainning and testing

• Search the hyper parameters

• Cross validate the models

• Analyse the results

4.12.1 Periodograms

The application using the periodograms is actually pretty simple, now that the data is prepared and all of those prepro-
cessing from last pipeline step is already done. The algorithm became straigh forward. First it is necessary to read the
features generated.

[1]: import pickle

file_name = './features/freq_data/freq_data.pkl'
with open(file_name, 'rb') as file:

freq_data = pickle.load(file)
freq_data.keys()

[1]: dict_keys(['features', 'labels'])

Manipulate features

After reading the data, it is necessary to create the classical regression structure model in the format 𝑌 = 𝑓 (Θ, 𝑋),
normalize the feature data and encode any possible label data into numerical classes. This is just the preparation for the
machine leaning algorithm to guarantee that the provided info is properlly designed for any machine learning classical
form.

38 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

[2]: import numpy as np
from sklearn import preprocessing

Create the label encoder
le_freq = preprocessing.LabelEncoder()
le_freq.fit(freq_data['labels'])

Define the regression model
regressors = preprocessing.normalize(freq_data['features']['spec'])
outputs = le_freq.transform(freq_data['labels'])

[3]: regressors.shape[1]

[3]: 12758

Also it is interesting to reduce the features dimension to build a simpler model. It is not necessary to create a classifier
with such amount (12758 features. . .) of features. There are several techniques that can be used to reduce the features
dimensions. The Principal Component Analisys, is very effective when dealing with high dimensional data. Here the
PCA algorithm from the sklearn library is used.

[4]: from sklearn.decomposition import PCA

Create the PCA decomposer
pca_dec = PCA(n_components=70, svd_solver='arpack')

Train the PCA object
pca_dec.fit(regressors)

Transform the data using
the PCA model
pca_regressor = pca_dec.transform(regressors)

Train-test data split

Next it is necessary to segregate the data into a set for validation and one for trainning the model.

[5]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
pca_regressor, outputs, test_size=0.33, random_state=42)

Hyper tunning

We could consider tunning the model hyper parameters to answer questions such as:

• Wich value of n_estimators is the best for this model and data?

• Wich cost function is the best to be selected as objective for this model?

We could do a hyper search, to find the best hyper parameters for this model, automating the hyper parameter selection.
There are several already builded algorithms to optimize this parameter search, and build find with high performance
the best parameters, provided a set of possible values. But, to understand what those algorithms actually does, we
could once build our own search algorithm. . .

As an example, lets run a first handly defined hyper parameter tunning using the confusion matrix of the model:

4.12. XGBoost Classifier 39

CoRoT Contributions, Release 1.0

[6]: import xgboost as xgb
from sklearn.metrics import confusion_matrix

Define the model parameters
param_dist = {

'objective':'binary:logistic',
'n_estimators' : 11

}

Create the range parameters to
search
n_estimators = [k+1 for k in range(100)]

Create the plotting variable
plot_vals = {

'true': {
'confirmed targets': [],
'eclipsing binaries': [],

},
'false': {

'confirmed targets': [],
'eclipsing binaries': [],

}
}

Estimate and validate each candidate
for opt in n_estimators:

Update the model parameters
param_dist['n_estimators'] = opt
Create the xgBoost classifier
clfs = xgb.XGBClassifier(**param_dist)
Fit the model to the data
clfs.fit(X_train, y_train,

eval_metric='logloss',
verbose=True)

Estimate the test output
y_pred = clfs.predict(X_test)
Compute the confusion matrix
conf_mat = confusion_matrix(

y_test, y_pred,
normalize='true')

Save the confusion matrix
plot_vals['true']['confirmed targets'].append(conf_mat[0,0])
plot_vals['true']['eclipsing binaries'].append(conf_mat[1,1])
plot_vals['false']['confirmed targets'].append(conf_mat[0,1])
plot_vals['false']['eclipsing binaries'].append(conf_mat[1,0])

[7]: from utils import *

Line plot each confidence matrix parameter
x_data = [n_estimators, n_estimators, n_estimators, n_estimators]
y_data = [plot_vals['true']['confirmed targets'],

plot_vals['true']['eclipsing binaries'],
plot_vals['false']['confirmed targets'],
plot_vals['false']['eclipsing binaries']]

legends= ['True - C.T.', 'True - E.B.', 'False - C.T.', 'False - E.B.']
colors = [6, 7, 2, 3]

(continues on next page)

40 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Hyper parameter search - Confusion parameters plot',
color_index=colors,
y_axis={'label': 'Proportion'},
x_axis={'label': 'n_estimators'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Train model

After running the hyper parameter search we can create a model with the best defined hyper parameters, or setup
parameters, and consolidate the model in to the best version for further performance analysis. The model is saved on
a particular variable, such as freq_clf to be further used in some vote chain model, if further necessary.

One interesting result from the above result, is that the best compromise result happens at the :math:‘n_x
= 5‘ not on :math:‘n_x=4‘ as it seems. Even though for the :math:‘n_x=4‘ the algorithm is able to
get all the exo planets, the compromise on having a confidence of only 66% for the eclipsing binaries
classification (classifier close to a coin flipper to classify eclipsing binaries), doesn’t allow us to select
:math:‘n_x=4‘. Therefore the best trade-off on both classes happens at :math:‘n_x=5‘.

[8]: # XGBoost Classifier model parameters
param_dist = {

'verbosity': 0,
'objective':'binary:logistic',
'n_estimators' : 5

}

Create the model classifier
freq_clf = xgb.XGBClassifier(**param_dist)

Train the model
freq_clf.fit(X_train, y_train,

eval_set=[
(X_train, y_train),
(X_test, y_test)

],
eval_metric='logloss',
verbose=False)

[8]: XGBClassifier(base_score=0.5, booster=None, colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints=None,
learning_rate=0.300000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints=None,
n_estimators=5, n_jobs=0, num_parallel_tree=1,
objective='binary:logistic', random_state=0, reg_alpha=0,

(continues on next page)

4.12. XGBoost Classifier 41

CoRoT Contributions, Release 1.0

(continued from previous page)

reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method=None,
validate_parameters=False, verbosity=0)

Results

In this part it is presented the results from the classification algorithm. Both regarding the data visualization and the
model classification quality.

[9]: import pprint
pp = pprint.PrettyPrinter(indent=2)

pp.pprint(freq_clf.evals_result())

{ 'validation_0': { 'logloss': [0.537111,
0.449156,
0.384568,
0.327504,
0.280901]},

'validation_1': { 'logloss': [0.609796,
0.574501,
0.546393,
0.504637,
0.509942]}}

[10]: import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

disp = plot_confusion_matrix(freq_clf, X_test, y_test,
display_labels=le_freq.classes_,
cmap=plt.cm.Blues,
normalize='true')

disp.ax_.set_title('Periodogram Classifier - Confusion matrix')
plt.show()

42 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

Comments

From this results it is possible to see that the classifier using periodogram amplitudes can get some interesting knowl-
edge on the eclipsing binaries classification, and have an even better results for the exo planets (confirmed target
labels). Also the results are not just good considering the classification capability, but also considering the robustness
of the algorithm. The robustness quality can be checked from the printed loss, which shows a continous descending
loss for both the test and train data.

4.12.2 Naive Bayes likelihood

Here we will read the Naive Bayes model parameters estimated for each light curve and use this information as feature
for the xgBoost classifier. To start this approach, we must first read the Bayes features saved from last step:

[11]: import pickle

file_name = './features/bayes_data/nx_6/bayes_data.pkl'
with open(file_name, 'rb') as file:

bayes_data = pickle.load(file)
bayes_data.keys()

[11]: dict_keys(['features', 'labels'])

Manipulate features

After reading the data, it is necessary to create the classical regression structure model in the format 𝑌 = 𝑓 (Θ, 𝑋),
normalize the feature data and encode any possible label data into numerical classes. This is just the preparation for the
machine leaning algorithm to guarantee that the provided info is properlly designed for any machine learning classical
form.

[12]: import numpy as np
from sklearn import preprocessing

Create the label encoder
le_bayes = preprocessing.LabelEncoder()
le_bayes.fit(bayes_data['labels'])

Define the regression model
regressors = preprocessing.normalize(bayes_data['features']['params'])
outputs = le_bayes.transform(bayes_data['labels'])

Train-test data split

Next it is necessary to segregate the data into a set for validation and one for trainning the model.

[13]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
regressors, outputs, test_size=0.33, random_state=42)

Hyper tunning

We could consider tunning the model hyper parameters to answer questions such as:

4.12. XGBoost Classifier 43

CoRoT Contributions, Release 1.0

• Wich value of n_estimators is the best for this model and data?

• Wich cost function is the best to be selected as objective for this model?

We could do a hyper search, to find the best hyper parameters for this model, automating the hyper parameter selection.
There are several already builded algorithms to optimize this parameter search, and build find with high performance
the best parameters, provided a set of possible values. But, to understand what those algorithms actually does, we
could once build our own search algorithm. . .

As an example, lets run a first handly defined hyper parameter tunning using the confusion matrix of the model:

[14]: import xgboost as xgb
from sklearn.metrics import confusion_matrix

Define the model parameters
param_dist = {

'objective':'binary:logistic',
'n_estimators' : 11

}

Create the range parameters to
search
n_estimators = [k+1 for k in range(100)]

Create the plotting variable
plot_vals = {

'true': {
'confirmed targets': [],
'eclipsing binaries': [],

},
'false': {

'confirmed targets': [],
'eclipsing binaries': [],

}
}

Estimate and validate each candidate
for opt in n_estimators:

Update the model parameters
param_dist['n_estimators'] = opt
Create the xgBoost classifier
clfs = xgb.XGBClassifier(**param_dist)
Fit the model to the data
clfs.fit(X_train, y_train,

eval_metric='logloss',
verbose=True)

Estimate the test output
y_pred = clfs.predict(X_test)
Compute the confusion matrix
conf_mat = confusion_matrix(

y_test, y_pred,
normalize='true')

Save the confusion matrix
plot_vals['true']['confirmed targets'].append(conf_mat[0,0])
plot_vals['true']['eclipsing binaries'].append(conf_mat[1,1])
plot_vals['false']['confirmed targets'].append(conf_mat[0,1])
plot_vals['false']['eclipsing binaries'].append(conf_mat[1,0])

44 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

[15]: from utils import *

Line plot each confidence matrix parameter
x_data = [n_estimators, n_estimators, n_estimators, n_estimators]
y_data = [plot_vals['true']['confirmed targets'],

plot_vals['true']['eclipsing binaries'],
plot_vals['false']['confirmed targets'],
plot_vals['false']['eclipsing binaries']]

legends= ['True - C.T.', 'True - E.B.', 'False - C.T.', 'False - E.B.']
colors = [6, 7, 2, 3]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Hyper parameter search - Confusion parameters plot',
color_index=colors,
y_axis={'label': 'Proportion'},
x_axis={'label': 'n_estimators'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Train model

After running the hyper parameter search we can create a model with the best defined hyper parameters, or setup
parameters, and consolidate the model in to the best version for further performance analysis. The model is saved on
a particular variable, such as bayes_clf to be further used in some vote chain model, if further necessary.

[16]: # XGBoost Classifier model parameters
param_dist = {

'verbosity': 0,
'objective':'binary:logistic',
'n_estimators' : 11

}

Create the model classifier
bayes_clf = xgb.XGBClassifier(**param_dist)

Train the model
bayes_clf.fit(X_train, y_train,

eval_set=[
(X_train, y_train),
(X_test, y_test)

],
eval_metric='logloss',
verbose=False)

[16]: XGBClassifier(base_score=0.5, booster=None, colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints=None,
learning_rate=0.300000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints=None,
n_estimators=11, n_jobs=0, num_parallel_tree=1,
objective='binary:logistic', random_state=0, reg_alpha=0,

(continues on next page)

4.12. XGBoost Classifier 45

CoRoT Contributions, Release 1.0

(continued from previous page)

reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method=None,
validate_parameters=False, verbosity=0)

Results

In this part it is presented the results from the classification algorithm. Both regarding the data visualization and the
model classification quality.

[17]: import pprint
pp = pprint.PrettyPrinter(indent=2)

pp.pprint(bayes_clf.evals_result())

{ 'validation_0': { 'logloss': [0.567346,
0.456689,
0.383979,
0.341458,
0.312702,
0.277829,
0.251812,
0.232627,
0.216223,
0.202809,
0.194951]},

'validation_1': { 'logloss': [0.657235,
0.599724,
0.567681,
0.561523,
0.556633,
0.547125,
0.553211,
0.528883,
0.531398,
0.528597,
0.536761]}}

[18]: import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

disp = plot_confusion_matrix(bayes_clf, X_test, y_test,
display_labels=le_bayes.classes_,
cmap=plt.cm.Blues,
normalize='true')

disp.ax_.set_title('Bayes Classifier - Confusion matrix')
plt.show()

46 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

Comments

From this results it is possible to see that the classifier using Naive Bayes estimated model parameters is able to highly
characterize the eclipsing binaries, and has acceptable classification performance for the confirmed targets. Also,
the algorithm, as in the approach using the Periodograms, is highly consistent, due to the continuous descending loss
during learning process for both the trainning and testing data. But comparing with the Periodogram approach, we can
ensure that this one is much more simpler, considering the data preprocessing, than the one using the Periodograms.
To generate the periodograms, several artesanal filtering techniques are necessary to generate the data in a suitable
format for the machine learning model. Even considering that the classification performance is better then the Naive
Bayes, more tests will be necessary to check if this better performace worth the trouble and stability risk of the
preprocessing techniques.

4.12.3 Hidden Markov Models

Here we use the model estimated from the Hidden Markov Models library, wich is the estimated 𝐴 matrix, or the so
called transition probability matrices as feature for the learning classifier. For that we must read the pickle file with
the desired features:

[19]: import pickle

file_name = './features/hmm_data/nx_8/hmm_data.pkl'
with open(file_name, 'rb') as file:

hmm_data = pickle.load(file)
hmm_data.keys()

[19]: dict_keys(['y', 't', 'labels', 'features'])

Manipulate features

After reading the data, it is necessary to create the classical regression structure model in the format 𝑌 = 𝑓 (Θ, 𝑋),
normalize the feature data and encode any possible label data into numerical classes. This is just the preparation for the

4.12. XGBoost Classifier 47

CoRoT Contributions, Release 1.0

machine leaning algorithm to guarantee that the provided info is properlly designed for any machine learning classical
form.

[20]: import numpy as np
from sklearn import preprocessing

Encode the label
le_hmm = preprocessing.LabelEncoder()
le_hmm.fit(hmm_data['labels'])

Define the model order
feat = hmm_data['features']
nx = feat['prob_matrix'][0].shape[0]

regressors = []
for phi in feat['prob_matrix']:

Reshape the regressor
reg = phi.reshape(nx*nx)
Add to the regressors
regressors.append(reg)

Normalize the regressors
regressors = preprocessing.normalize(regressors)
Define outputs as encoded variables
outputs = le_hmm.transform(hmm_data['labels'])

Train-test data split

Next it is necessary to segregate the data into a set for validation and one for trainning the model.

[21]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
regressors, outputs, test_size=0.33, random_state=42)

Hyper tunning

We could consider tunning the model hyper parameters to answer questions such as:

• Wich value of n_estimators is the best for this model and data?

• Wich cost function is the best to be selected as objective for this model?

We could do a hyper search, to find the best hyper parameters for this model, automating the hyper parameter selection.
There are several already builded algorithms to optimize this parameter search, and build find with high performance
the best parameters, provided a set of possible values. But, to understand what those algorithms actually does, we
could once build our own search algorithm. . .

As an example, lets run a first handly defined hyper parameter tunning using the confusion matrix of the model:

[22]: from sklearn.metrics import confusion_matrix

n_estimators = [k+1 for k in range(100)]

conf_matrices = []
for opt in n_estimators:

Update the model parameters

(continues on next page)

48 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

param_dist['n_estimators'] = opt
Create the xgBoost classifier
clfs = xgb.XGBClassifier(**param_dist)
Fit the model to the data
clfs.fit(X_train, y_train,

eval_metric='logloss',
verbose=True)

Estimate the test output
y_pred = clfs.predict(X_test)
Compute the confusion matrix
conf_mat = confusion_matrix(

y_test, y_pred,
normalize='true')

Save the confusion matrix
conf_matrices.append(conf_mat)

[23]: from utils import *

Create and organize the plot values
plot_vals = {

'true': {
'confirmed targets': [],
'eclipsing binaries': [],

},
'false': {

'confirmed targets': [],
'eclipsing binaries': [],

}
}
for result in conf_matrices:

plot_vals['true']['confirmed targets'].append(result[0,0])
plot_vals['true']['eclipsing binaries'].append(result[1,1])
plot_vals['false']['confirmed targets'].append(result[0,1])
plot_vals['false']['eclipsing binaries'].append(result[1,0])

x_values = range(len(conf_matrices))
x_data = [x_values, x_values, x_values, x_values]
y_data = [plot_vals['true']['confirmed targets'],

plot_vals['true']['eclipsing binaries'],
plot_vals['false']['confirmed targets'],
plot_vals['false']['eclipsing binaries']]

legends= ['True - C.T.', 'True - E.B.', 'False - C.T.', 'False - E.B.']
colors = [6, 7, 2, 3]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Hyper parameter search - Confusion plot',
color_index=colors,
y_axis={'label': 'Intensity'},
x_axis={'label': 'n_estimators'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

4.12. XGBoost Classifier 49

CoRoT Contributions, Release 1.0

Train model

After running the hyper parameter search we can create a model with the best defined hyper parameters, or setup
parameters, and consolidate the model in to the best version for further performance analysis. The model is saved on
a particular variable, such as hmm_clf to be further used in some vote chain model, if further necessary.

[24]: import xgboost as xgb

param_dist = {
'verbosity': 0,
'objective':'binary:logistic',
'n_estimators' : 34

}

hmm_clf = xgb.XGBClassifier(**param_dist)

hmm_clf.fit(X_train, y_train,
eval_set=[

(X_train, y_train),
(X_test, y_test)

],
eval_metric='logloss',
verbose=False)

[24]: XGBClassifier(base_score=0.5, booster=None, colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints=None,
learning_rate=0.300000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints=None,
n_estimators=34, n_jobs=0, num_parallel_tree=1,
objective='binary:logistic', random_state=0, reg_alpha=0,
reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method=None,
validate_parameters=False, verbosity=0)

Results

Here we include some visualization results for the xgBoost algorithm classification. As the first result, we just print
the model eval metrics, here the log loss of the model, for both the trainning and testing data.

[25]: import pprint
pp = pprint.PrettyPrinter(indent=2)

evals_result = hmm_clf.evals_result()
pp.pprint(evals_result)

{ 'validation_0': { 'logloss': [0.572305,
0.474664,
0.396965,
0.336296,
0.304903,
0.262527,
0.235207,
0.212948,
0.192356,
0.177346,
0.163549,
0.15337,

(continues on next page)

50 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

0.140518,
0.130899,
0.123485,
0.117721,
0.113933,
0.11041,
0.106786,
0.101635,
0.098872,
0.096439,
0.093749,
0.091741,
0.089836,
0.088826,
0.087047,
0.086091,
0.083466,
0.081756,
0.079948,
0.079189,
0.077326,
0.076633]},

'validation_1': { 'logloss': [0.673667,
0.635211,
0.618026,
0.607399,
0.628232,
0.650925,
0.654683,
0.651218,
0.653813,
0.663263,
0.660528,
0.677213,
0.667749,
0.663841,
0.676913,
0.67355,
0.675848,
0.674091,
0.687084,
0.693771,
0.69817,
0.700085,
0.69875,
0.69817,
0.688993,
0.692456,
0.697232,
0.699571,
0.694171,
0.6861,
0.6878,
0.690059,
0.682183,
0.685172]}}

4.12. XGBoost Classifier 51

CoRoT Contributions, Release 1.0

[26]: import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

disp = plot_confusion_matrix(hmm_clf, X_test, y_test,
display_labels=le_hmm.classes_,
cmap=plt.cm.Blues,
normalize='true')

disp.ax_.set_title('Confusion matrix')
plt.show()

Comments

This approch is far the worst one from the ones presented here. This is because, not only the preprocessing algorithms
are to heavy and has several stability issues, the algorithm does not have a consistent and desired learning behavior
for the test data, when considering the loss. Even though, the algorithm has a consistent classification performance
on both classes, this other issues make these results also unstable, therefore it cannot be trusted.

4.13 Decision trees

The approach presented in this path, will be one that uses the classical Decision Trees to manage the classification
problem. Most of the steps presented here will repeat itself from the XGBoost path, but the algorithm analysis will
be a little bit different. This shows that by following the procedure proposed in this study, in general, leads to an
interesting pipeline that enables the user to run several machine learning algorithms from the same rundown. Also,
this algorithm will be used for each generated feature, namelly:

• Periodograms

• Bayes Similarity

• Hidden Markov Models

All approaches will pass trough the common machine learning pipeline, where we must:

• Normalize the data (if necessary)

• Divide the data between trainning and testing

52 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

• Search the hyper parameters

• Cross validate the models

• Analyse the results

4.13.1 Periodograms

The application using the periodograms is actually pretty simple, now that the data is prepared and all of those prepro-
cessing from last pipeline step is already done. The algorithm became straigh forward. First it is necessary to read the
features generated.

[1]: import pickle

file_name = './features/freq_data/freq_data.pkl'
with open(file_name, 'rb') as file:

freq_data = pickle.load(file)
freq_data.keys()

[1]: dict_keys(['features', 'labels'])

Manipulate features

After reading the data, it is necessary to create the classical regression structure model in the format 𝑌 = 𝑓 (Θ, 𝑋),
normalize the feature data and encode any possible label data into numerical classes. This is just the preparation for the
machine leaning algorithm to guarantee that the provided info is properlly designed for any machine learning classical
form.

[2]: import numpy as np
from sklearn import preprocessing

Create the label encoder
le_freq = preprocessing.LabelEncoder()
le_freq.fit(freq_data['labels'])

Define the regression model
regressors = preprocessing.normalize(freq_data['features']['spec'])
outputs = le_freq.transform(freq_data['labels'])

[3]: regressors.shape[1]

[3]: 12758

Also it is interesting to reduce the features dimension to build a simpler model. It is not necessary to create a classifier
with such amount (12758 features. . .) of features. There are several techniques that can be used to reduce the features
dimensions. The Principal Component Analisys, is very effective when dealing with high dimensional data. Here the
PCA algorithm from the sklearn library is used.

[4]: from sklearn.decomposition import PCA

Create the PCA decomposer
pca_dec = PCA(n_components=70)#, svd_solver='arpack')

Train the PCA object
pca_dec.fit(regressors)

(continues on next page)

4.13. Decision trees 53

CoRoT Contributions, Release 1.0

(continued from previous page)

Transform the data using
the PCA model
pca_regressor = pca_dec.transform(regressors)

Train-test data split

Next it is necessary to segregate the data into a set for validation and one for trainning the model.

[5]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
pca_regressor, outputs, test_size=0.33, random_state=42)

Hyper tunning

We could consider tunning the model hyper parameters to answer questions such as:

• Wich value of max_depth is the best for this model and data?

• Wich cost function is the best to be selected as criterion for this model?

We could do a hyper search, to find the best hyper parameters for this model, automating the hyper parameter selection.
There are several already builded algorithms to optimize this parameter search, and build find with high performance
the best parameters, provided a set of possible values. But, to understand what those algorithms actually does, we
could once build our own search algorithm. . .

As an example, lets run a first handly defined hyper parameter tunning using the confusion matrix of the model:

[6]: from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix

Define the model parameters
param_dist = {

'random_state' : 0,
'criterion' : 'entropy', # or 'entropy' for information gain
'max_depth' : 0

}

Create the range parameters to
search
max_features_dim = X_train.shape[1]
max_depth = [k + 1 for k in range(max_features_dim)]

Create the plotting variable
plot_vals = {

'true': {
'confirmed targets': [],
'eclipsing binaries': [],

},
'false': {

'confirmed targets': [],
'eclipsing binaries': [],

}
}

(continues on next page)

54 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

Estimate and validate each candidate
for opt in max_depth:

Update the model parameters
param_dist['max_depth'] = opt
Create the xgBoost classifier
clfs = DecisionTreeClassifier(**param_dist)
Fit the model to the data
clfs.fit(X_train, y_train)
Estimate the test output
y_pred = clfs.predict(X_test)
Compute the confusion matrix
conf_mat = confusion_matrix(

y_test, y_pred,
normalize='true')

Save the confusion matrix
plot_vals['true']['confirmed targets'].append(conf_mat[0,0])
plot_vals['true']['eclipsing binaries'].append(conf_mat[1,1])
plot_vals['false']['confirmed targets'].append(conf_mat[0,1])
plot_vals['false']['eclipsing binaries'].append(conf_mat[1,0])

[7]: from utils import *

Line plot each confidence matrix parameter
x_data = [max_depth, max_depth, max_depth, max_depth]
y_data = [plot_vals['true']['confirmed targets'],

plot_vals['true']['eclipsing binaries'],
plot_vals['false']['confirmed targets'],
plot_vals['false']['eclipsing binaries']]

legends= ['True - C.T.', 'True - E.B.', 'False - C.T.', 'False - E.B.']
colors = [6, 7, 2, 3]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Hyper parameter search - Confusion parameters plot',
color_index=colors,
y_axis={'label': 'Proportion'},
x_axis={'label': 'n_estimators'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Train model

After running the hyper parameter search we can create a model with the best defined hyper parameters, or setup
parameters, and consolidate the model in to the best version for further performance analysis.

[8]:
param_dist = {

(continues on next page)

4.13. Decision trees 55

CoRoT Contributions, Release 1.0

(continued from previous page)

'random_state': 0,
'criterion' : 'entropy', # or 'entropy' for information gain
'max_depth' : max_depth[2]

}

Create the model classifier
freq_clf = DecisionTreeClassifier(**param_dist)

Train the model
freq_clf.fit(X_train, y_train)

[8]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='entropy',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort='deprecated',
random_state=0, splitter='best')

Results

In this part it is presented the results from the classification algorithm. Both regarding the data visualization and the
model classification quality.

[9]: import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

disp = plot_confusion_matrix(freq_clf, X_test, y_test,
display_labels=le_freq.classes_,
cmap=plt.cm.Blues,
normalize='true')

disp.ax_.set_title('Periodogram Classifier - Confusion matrix')
plt.show()

56 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

Comments

From this result, it possible to see that the decision tree model is able to learn some information from eclipsing binaries,
as it just get 25% of the testing data wrong. But when analysing the confirmed targets results, it is possible to see that
we have a coin toss algorithm, since it cannot learn anything from the exo planets data. Comparing with the XGBoost
algorithm it is possible to see a big downgrade on the classification results, ensuring the outstanding capability of the
boosting feature of the algorithm.

4.13.2 Naive Bayes likelihood

Here we will read the Naive Bayes model parameters estimated for each light curve and use this information as feature
for the xgBoost classifier. To start this approach, we must first read the Bayes features saved from last step:

[10]: import pickle

file_name = './features/bayes_data/nx_12/bayes_data.pkl'
with open(file_name, 'rb') as file:

bayes_data = pickle.load(file)
bayes_data.keys()

[10]: dict_keys(['features', 'labels'])

Manipulate features

After reading the data, it is necessary to create the classical regression structure model in the format 𝑌 = 𝑓 (Θ, 𝑋),
normalize the feature data and encode any possible label data into numerical classes. This is just the preparation for the
machine leaning algorithm to guarantee that the provided info is properlly designed for any machine learning classical
form.

[11]: import numpy as np
from sklearn import preprocessing

Create the label encoder
le_bayes = preprocessing.LabelEncoder()
le_bayes.fit(bayes_data['labels'])

Define the regression model
regressors = preprocessing.normalize(bayes_data['features']['params'])
outputs = le_bayes.transform(bayes_data['labels'])

Train-test data split

Next it is necessary to segregate the data into a set for validation and one for trainning the model.

[12]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
regressors, outputs, test_size=0.33, random_state=42)

Hyper tunning

We could consider tunning the model hyper parameters to answer questions such as:

4.13. Decision trees 57

CoRoT Contributions, Release 1.0

• Wich value of n_estimators is the best for this model and data?

• Wich cost function is the best to be selected as criterion for this model?

We could do a hyper search, to find the best hyper parameters for this model, automating the hyper parameter selection.
There are several already builded algorithms to optimize this parameter search, and build find with high performance
the best parameters, provided a set of possible values. But, to understand what those algorithms actually does, we
could once build our own search algorithm. . .

As an example, lets run a first handly defined hyper parameter tunning using the confusion matrix of the model:

[13]: from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix

Define the model parameters
param_dist = {

'random_state' : 0,
'criterion' : 'gini', # or 'entropy' for information gain
'max_depth' : 0

}

Create the range parameters to
search
max_features_dim = X_train.shape[1]
max_depth = [k + 1 for k in range(max_features_dim)]

Create the plotting variable
plot_vals = {

'true': {
'confirmed targets': [],
'eclipsing binaries': [],

},
'false': {

'confirmed targets': [],
'eclipsing binaries': [],

}
}

Estimate and validate each candidate
for opt in max_depth:

Update the model parameters
param_dist['max_depth'] = opt
Create the xgBoost classifier
clfs = DecisionTreeClassifier(**param_dist)
Fit the model to the data
clfs.fit(X_train, y_train)
Estimate the test output
y_pred = clfs.predict(X_test)
Compute the confusion matrix
conf_mat = confusion_matrix(

y_test, y_pred,
normalize='true')

Save the confusion matrix
plot_vals['true']['confirmed targets'].append(conf_mat[0,0])
plot_vals['true']['eclipsing binaries'].append(conf_mat[1,1])
plot_vals['false']['confirmed targets'].append(conf_mat[0,1])
plot_vals['false']['eclipsing binaries'].append(conf_mat[1,0])

58 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

[14]: from utils import *

Line plot each confidence matrix parameter
x_data = [max_depth, max_depth, max_depth, max_depth]
y_data = [plot_vals['true']['confirmed targets'],

plot_vals['true']['eclipsing binaries'],
plot_vals['false']['confirmed targets'],
plot_vals['false']['eclipsing binaries']]

legends= ['True - C.T.', 'True - E.B.', 'False - C.T.', 'False - E.B.']
colors = [6, 7, 2, 3]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Hyper parameter search - Confusion parameters plot',
color_index=colors,
y_axis={'label': 'Proportion'},
x_axis={'label': 'n_estimators'})

visual.show_plot(p)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Train model

After running the hyper parameter search we can create a model with the best defined hyper parameters, or setup
parameters, and consolidate the model in to the best version for further performance analysis. The model is saved on
a particular variable, such as bayes_clf to be further used in some vote chain model, if further necessary.

[15]:
param_dist = {

'random_state': 0,
'criterion' : 'gini', # or 'entropy' for information gain
'max_depth' : max_depth[3]

}

Create the model classifier
bayes_clf = DecisionTreeClassifier(**param_dist)

Train the model
bayes_clf.fit(X_train, y_train)

[15]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
max_depth=4, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort='deprecated',
random_state=0, splitter='best')

Results

In this part it is presented the results from the classification algorithm. Both regarding the data visualization and the
model classification quality.

4.13. Decision trees 59

CoRoT Contributions, Release 1.0

[16]: import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

disp = plot_confusion_matrix(bayes_clf, X_test, y_test,
display_labels=le_bayes.classes_,
cmap=plt.cm.Blues,
normalize='true')

disp.ax_.set_title('Bayes Classifier - Confusion matrix')
plt.show()

Comments

This one of the most interesting results. . . note that this same result appered on the XGBoost classifier algorithm. This
enables the speculation that the Naive Bayes parameters provide an information so clean about the classes that any
algorithm, as complex as possible, or as simple as possible, will be able to find a classification pattern. To examplify
this assumption we can plot the tree such as:

[17]: from sklearn import tree

plt.figure(figsize=(8,8))
p_tree = tree.plot_tree(bayes_clf,

precision=1,
filled=True,
proportion=True,
rotate=True,
rounded=True)

60 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

4.13.3 Hidden Markov Models

Here we use the model estimated from the Hidden Markov Models library, wich is the estimated 𝐴 matrix, or the so
called transition probability matrices as feature for the learning classifier. For that we must read the pickle file with
the desired features:

[18]: import pickle

file_name = './features/hmm_data/nx_20/hmm_data.pkl'
with open(file_name, 'rb') as file:

hmm_data = pickle.load(file)
hmm_data.keys()

[18]: dict_keys(['y', 't', 'labels', 'features'])

Manipulate features

After reading the data, it is necessary to create the classical regression structure model in the format 𝑌 = 𝑓 (Θ, 𝑋),
normalize the feature data and encode any possible label data into numerical classes. This is just the preparation for the
machine leaning algorithm to guarantee that the provided info is properlly designed for any machine learning classical
form.

4.13. Decision trees 61

CoRoT Contributions, Release 1.0

[19]: import numpy as np
from sklearn import preprocessing

Encode the label
le_hmm = preprocessing.LabelEncoder()
le_hmm.fit(hmm_data['labels'])

Define the model order
feat = hmm_data['features']
nx = feat['prob_matrix'][0].shape[0]

regressors = []
for phi in feat['prob_matrix']:

Reshape the regressor
reg = phi.reshape(nx*nx)
Add to the regressors
regressors.append(reg)

Normalize the regressors
regressors = preprocessing.normalize(regressors)
Define outputs as encoded variables
outputs = le_hmm.transform(hmm_data['labels'])

Train-test data split

Next it is necessary to segregate the data into a set for validation and one for trainning the model.

[20]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
regressors, outputs, test_size=0.33, random_state=42)

Hyper tunning

We could consider tunning the model hyper parameters to answer questions such as:

• Wich value of n_estimators is the best for this model and data?

• Wich cost function is the best to be selected as objective for this model?

We could do a hyper search, to find the best hyper parameters for this model, automating the hyper parameter selection.
There are several already builded algorithms to optimize this parameter search, and build find with high performance
the best parameters, provided a set of possible values. But, to understand what those algorithms actually does, we
could once build our own search algorithm. . .

As an example, lets run a first handly defined hyper parameter tunning using the confusion matrix of the model:

[21]: from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix

Define the model parameters
param_dist = {

'random_state' : 0,
'criterion' : 'gini', # or 'entropy' for information gain
'max_depth' : 0

}

(continues on next page)

62 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

(continued from previous page)

Create the range parameters to
search
max_features_dim = X_train.shape[1]
max_depth = [k + 1 for k in range(max_features_dim)]

Create the plotting variable
plot_vals = {

'true': {
'confirmed targets': [],
'eclipsing binaries': [],

},
'false': {

'confirmed targets': [],
'eclipsing binaries': [],

}
}

Estimate and validate each candidate
for opt in max_depth:

Update the model parameters
param_dist['max_depth'] = opt
Create the xgBoost classifier
clfs = DecisionTreeClassifier(**param_dist)
Fit the model to the data
clfs.fit(X_train, y_train)
Estimate the test output
y_pred = clfs.predict(X_test)
Compute the confusion matrix
conf_mat = confusion_matrix(

y_test, y_pred,
normalize='true')

Save the confusion matrix
plot_vals['true']['confirmed targets'].append(conf_mat[0,0])
plot_vals['true']['eclipsing binaries'].append(conf_mat[1,1])
plot_vals['false']['confirmed targets'].append(conf_mat[0,1])
plot_vals['false']['eclipsing binaries'].append(conf_mat[1,0])

[22]: from utils import *

Line plot each confidence matrix parameter
x_data = [max_depth, max_depth, max_depth, max_depth]
y_data = [plot_vals['true']['confirmed targets'],

plot_vals['true']['eclipsing binaries'],
plot_vals['false']['confirmed targets'],
plot_vals['false']['eclipsing binaries']]

legends= ['True - C.T.', 'True - E.B.', 'False - C.T.', 'False - E.B.']
colors = [6, 7, 2, 3]

p = visual.multline_plot(x_data, y_data,
legend_label=legends,
title='Hyper parameter search - Confusion parameters plot',
color_index=colors,
y_axis={'label': 'Proportion'},
x_axis={'label': 'n_estimators'})

visual.show_plot(p)

4.13. Decision trees 63

CoRoT Contributions, Release 1.0

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

Train model

After running the hyper parameter search we can create a model with the best defined hyper parameters, or setup
parameters, and consolidate the model in to the best version for further performance analysis. The model is saved on
a particular variable, such as hmm_clf to be further used in some vote chain model, if further necessary.

[23]:
param_dist = {

'random_state': 0,
'criterion' : 'gini', # or 'entropy' for information gain
'max_depth' : max_depth[0]

}

Create the model classifier
hmm_clf = DecisionTreeClassifier(**param_dist)

Train the model
hmm_clf.fit(X_train, y_train)

[23]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
max_depth=1, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort='deprecated',
random_state=0, splitter='best')

Results

Here we include some visualization results for the xgBoost algorithm classification. As the first result, we just print
the model eval metrics, here the log loss of the model, for both the trainning and testing data.

[24]: import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

disp = plot_confusion_matrix(hmm_clf, X_test, y_test,
display_labels=le_hmm.classes_,
cmap=plt.cm.Blues,
normalize='true')

disp.ax_.set_title('Confusion matrix')
plt.show()

64 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

Comments

Note that here, the same happened with the XGBoost classifier. . . so the conclusion must be the same as the presented
one from the Naive Bayes method. The information from the Hidden Markov Models, only contain so much information
that only allows the classifier to get to this performance. This is shown by the best complexity found for this algorithm,
which is :math:‘n_x=1‘, therefore the simplest model as possible. To illustrate that, we can show the tree such as:

[25]: from sklearn import tree

plt.figure(figsize=(8,8))
p_tree = tree.plot_tree(hmm_clf,

precision=1,
filled=True,
proportion=True,
rotate=True,
rounded=True)

4.13. Decision trees 65

CoRoT Contributions, Release 1.0

4.14 CoRoT Contributions

4.14.1 utils Package

Intro

copyright 2010 Marcelo Lima

license BSD-3-Clause

Data helper

This module is responsible to read the .fits files and return the readed data as a Curve objects, which is a more suitable
format to read the data. Or one might choose to only receive the data in a simple type as possible such as lists and
dictionaries, thus by choosing this method, one will loose the hability to use the inherited computing pre processing
features from the Curve format.

class utils.data_helper.Reader
Bases: object

The reader module is responsible for reading the raw .fits files and provide the data in a more friendly data
structure for the python environment. It supports both unique .fits files such as a batch processing approach,

66 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

using folders filled with several .fits files.

As simple as it is to call a class, the reader package has no usage complication. For one to import and use it’s
methods, it is only necessary to do:

import utils.data_helper as dh
myReader = dh.Reader()

Retrieved data structure

One must understand that the retrieved data will be or Curve objects or they will be composed of simple
list and dict outputs. All methods have a particular parameter, with default simple_out=False thence
returning the data as Curve. If one defines the parameter simple_out=True, one will receive the obtained
data as dictionaries of indexed curves in lists, which is not advisable.

New in version 0.1: The from_file and from_folder methods where added.

from_file(path=None, label=None, index=None, feature=None)
Get the white light curve from the provided .fits file, and label this curve with the provided label (or with
the folder name, if label=None) and return the data_sctruc.Curve.

Parameters

• path (str) – Paths to the desired .fits file

• label (str) – The label for the returned curve

• index (int) – The HUD table index

• feature (str) – The light curve specific feature name

Returns The specific feature of light curve in more suitable format

Return type data_struc.Curve

from_folder(folder=None, label=None, index=None, items=None)
Get the white light curve of each .fits file presented inside the provided folder, label each one or with the
provided label, or with the folder name, and return a list with one data_struc.Curve variable for each .fits
file.

Parameters

• folder (str) – Paths to the folder with the .fits files

• label (str) – The label for the returned light curves

• index (int) – The HUD table index

• items (int) – The amount of random files to read from folder

Returns A list of data_struc.Curve

Return type list

from_txt()

list_features(folders=None)
Get only the features list, for each .fits curve file, inside the folders list.

Parameters folders (list) – Paths to the folders with the .fits

Returns The list with features available for each .fits found

Return type list

4.14. CoRoT Contributions 67

CoRoT Contributions, Release 1.0

Data structure

This module gathers all the custom data structures created to replace the .fits format provided by the raw data-set.

It represents the direct interface from the complex representation of the astropy.table modules, to simple array python
variables.

class utils.data_struc.Curve(hdu=None, index=None, label=None)
Bases: object

This object maintain the light curve HUD table, and represents an interface to get data from the HUD tables of
the astropy library and the python environment. Therefore, it just represent a simple interface to transcript the
HUD table informations to simple python variables such as dict, list and array.

For example to get create and extract the data from a curve object the user just need to:

import utils.data_struc as ds
curve = ds.Curve(hdu=hduTable, index=hduTableIndex, label=curveLabel)
feature = curve['FEATURE NAME']

By using the Reader this is even more transparent. Here you need to provide

Parameters

• hdu (astronomy.table.Table) – The HDU table from astronomy library

• index (int) – The desired HDU table index to be used

• label (str) – The desired label for this light curve

And then, by just argumenting the column name of the table, the user can get the values of the column as a
ndarray variable.

Advantages

One must question why use this particular structure instead of just using the astropy.table.Table objects. But,
since in most time we just use the last HDU table (usually index=2), this structure automatically removed all
other tables and just save the desired one in a memory map format (that has a better performance).

This approach is memory efficient because, the information removed is usually something close to 10 times
bigger than the used one. . . that is, the first and second table are at least ten times bigger than the third table
(wich is the most used one, index=2). Therefore, for this application, this approach is actually efficient when
compared to just loading the data and dealing with the information in astropy tables.

New in version 0.1: The from_file and from_folder methods where added.

index_tables(index=None)
Handly index the HDU table from the Curve object, by replacing the raw_table variable with only the
desired HDU table.

Parameters index (int) – The index of the desired HDU table

julian_to_stdtime()
Change the julian date variable of the HDU tables to standard time representations.

Visualization

This module simplifies the usage of the bokeh library by reducing the amount of code to plot some figures. For
example, without this library, to plot a simple line with the bokeh library, one must do something like:

68 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

from bokeh.palettes import Magma
from bokeh.layouts import column
from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource
from bokeh.io import output_notebook, push_notebook

p = figure(
title="Some title",
plot_width=400,
plot_height=600)

Style the figure image
p.grid.grid_line_alpha = 0.1
p.xgrid.band_fill_alpha = 0.1
p.xgrid.band_fill_color = Magma[10][1]
p.yaxis.axis_label = "Some label for y axis"
p.xaxis.axis_label = "Some label for x axis"

Place the information on plot
p.line(x_data, y_data,

legend_label="My legend label",
line_width=2,
color=Magma[10][2],
muted_alpha=0.1,
line_cap='rounded')

p.legend.location = "right_top"
p.legend.click_policy = "disable"

show(p)

Wich, with the visual library one might do with just:

p = visual.line_plot(x_data, y_data,
legend_label='My legend label',
title='Some title',
y_axis={'label': 'Some label for y axis'},
x_axis={'label': 'Some label for x axis'})

visual.show_plot(p)

Simple as that. . . It follows a defualt plotting style for each plot, presented in the /utils/configs/plot.yaml. And the user
just need to pass the parameters that he want to change from this default style. It also provides some pre-computation
to make more complex graphs, such as box plots, histograms and so on.

Note: This is just a library to simplify most plots used during the notebooks to not populate the study with unecessary
code. . . The user can use any library desired to do this same plots.

Also the user can change the plot.yaml file to set any default plot style that one might want. Please, for that check out
the file in /utils/configs/plot.yaml.

utils.visual.box_plot(score=None, labels=None, opts=None, **kwargs)
Create a Bokeh figure object and populate its box plot properties with the provided information. To create a box
plot, you actually need to combine two segment, a vbar, and a rect object from Bokeh. This method already
does that for you. It also already computes the statistical median, mean and each quantile.

Parameters

• score (list) – The list with all values of the distributions

4.14. CoRoT Contributions 69

CoRoT Contributions, Release 1.0

• labels (list) – The list with the group label for each value of score

• opts (dict) – The desired options of the plot.yaml in dictionary format

• kwargs – The desired options of the plot.yaml in directive format

Returns A Bokeh figure object with the box plot necessary properties filled

Return type bokeh.Figure

utils.visual.handle_opts(default, provided)
Merge the default (set by the plot.yaml file) and user provided plot options into one dictionary.

Parameters

• default (dict) – The default style guide dict from plot.yaml

• provided (dict) – The user provided properties

Returns A dict with the merged default and provided plot options

Return type dict

utils.visual.hist_plot(hist=None, edges=None, opts=None, **kwargs)
Create a Bokeh figure object and populate its histogram plot propertie with the provided information. To create
a histogram plot, you actually need to the correct properties of the quad object from Bokeh. This method already
does that for you. It also already computes the correct values, and create the bins correctly.

Parameters

• hist (ndarray) – The hist output from numpy.histogram

• edges (ndarray) – The histogram edges output from numpy.histogram

• opts (dict) – The desired options of the plot.yaml in dictionary format

• kwargs – The desired options of the plot.yaml in directive format

Returns A Bokeh figure object with the line properties filled

Return type bokeh.Figure

utils.visual.line_plot(x_data=None, y_data=None, opts=None, **kwargs)
Create a Bokeh figure object and populate its line propertie with the provided information.

Parameters

• x_data (ndarray) – The ndarray with x axis values

• y_data (ndarray) – The ndarray with y axis values

• opts (dict) – The desired options of the plot.yaml in dictionary format

• kwargs – The desired options of the plot.yaml in directive format

Returns A Bokeh figure object with the line properties filled

Return type bokeh.Figure

utils.visual.multline_plot(x_data=None, y_data=None, opts=None, **kwargs)
Create a Bokeh figure object and populate a line object of the bokeh library for each line data provided in the
y_data list parameter of this function.

Parameters

• x_data (list) – The list with a ndarray data for the x axis of each line

• y_data (list) – The list with a ndarray data for the y axis of each line

70 Chapter 4. Some results. . .

CoRoT Contributions, Release 1.0

• opts (dict) – The desired options of the plot.yaml in dictionary format

• kwargs – The desired options of the plot.yaml in directive format

Returns A Bokeh figure object with the line properties filled

Return type bokeh.Figure

utils.visual.show_plot(*args)
This function shows the figures provided as arguments by default, in a column manner.

Parameters args – The bokeh.Figure objects to be show in a figure

4.15 Vanderlei Cunha Parro

4.16 Marcelo Mendes Lafetá Lima

4.17 Roberto Bertoldo Menezes

4.15. Vanderlei Cunha Parro 71

https://www.linkedin.com/in/vparro/
https://github.com/vparro/
mailto:vparro@ieee.org
https://www.youtube.com/channel/UCUtWl9yb-vtyXYyC1tO-btQ
https://www.linkedin.com/in/marcelo-lafet�-lima/
https://github.com/lafetamarcelo/
mailto:marcelolafeta.nsee@gmail.com
mailto:robertobm@astro.iag.usp.br

CoRoT Contributions, Release 1.0

72 Chapter 4. Some results. . .

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

73

CoRoT Contributions, Release 1.0

74 Chapter 5. Indices and tables

Python Module Index

u
utils, 66
utils.data_helper, 66
utils.data_struc, 68
utils.visual, 68

75

CoRoT Contributions, Release 1.0

76 Python Module Index

Index

B
box_plot() (in module utils.visual), 69

C
Curve (class in utils.data_struc), 68

F
from_file() (utils.data_helper.Reader method), 67
from_folder() (utils.data_helper.Reader method),

67
from_txt() (utils.data_helper.Reader method), 67

H
handle_opts() (in module utils.visual), 70
hist_plot() (in module utils.visual), 70

I
index_tables() (utils.data_struc.Curve method), 68

J
julian_to_stdtime() (utils.data_struc.Curve

method), 68

L
line_plot() (in module utils.visual), 70
list_features() (utils.data_helper.Reader

method), 67

M
multline_plot() (in module utils.visual), 70

R
Reader (class in utils.data_helper), 66

S
show_plot() (in module utils.visual), 71

U
utils (module), 66

utils.data_helper (module), 66
utils.data_struc (module), 68
utils.visual (module), 68

77

	Introduction to CoRoT
	Problem proposed
	Pipeline
	Some results…
	Read .fits raw data
	Preprocessing data
	Resampling series
	Sample time distribution
	Resample time series data

	Filtering series
	Application example
	Generation algorithms
	Save pre-processed data
	Save as .mat file
	Save as .pickle file

	Reading the data
	Feature: Frequency response
	Introduction
	Spectrum generation
	Detrended spectrum
	Resample spectrum
	Generation algorithm
	Save feature

	Feature: Naive Bayes likelihood
	Regression model
	Next step parameters
	Save feature

	Feature: Markov Hidden Models
	Preprocessing data
	Estimate HMM
	Save feature
	Download features

	XGBoost Classifier
	Periodograms
	Naive Bayes likelihood
	Hidden Markov Models

	Decision trees
	Periodograms
	Naive Bayes likelihood
	Hidden Markov Models

	CoRoT Contributions
	utils Package

	Vanderlei Cunha Parro
	Marcelo Mendes Lafetá Lima
	Roberto Bertoldo Menezes

	Indices and tables
	Python Module Index
	Index

